References
Adekunle, T., Sharma, P., & Lee, S. (2020). Current generation by E. coli isolates from water sources in microbial fuel cells. Renewable Microbial Energy, 8(2), 67–75. Ali, F., Hassan, A., & Kumar, R. (2020). Urine as a sustainable substrate for microbial fuel cells. Environmental Biotechnology, 11(4), 210–219. Bhupendra, V. S., Patel, R., & Mehta, M. (2022). Microbial biotechnology: Applications and advancements. Journal of Applied Biotechnology Reports, 9(4), 25–35. Croxen, M. A., et al. (2022). Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 20(5), 235-250. Gordi, J. M. (2012). Microbial fuel cell performance: Design, operation and biological factors (pp. 1– 242). Hassan, S., Nandy, S., & Tripathi, A. (2021). Substrate effects on microbial fuel cell performance: A comparative study. Journal of Bioelectrochemistry, 19(2), 87–98. Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., & Ishii, S. (2017). Environmental Escherichia coli: Ecology and public health implications—A review. Journal of Applied Microbiology, 123(3), 570–581. https://doi.org/10.1111/jam.13468 Jia, J., Tang, Y., Liu, B., Wu, D., Ren, N., & Xing, D. (2013). Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technology, 144, 94–99. Koch, C., & Harnisch, F. (2022). What is the essence of microbial electroactivity? Frontiers in Microbiology, 13, 869-783. Kumar, R., Singh, L., Zularisam, A. W., Hai, F. I., and Al-Muhtaseb, A. H. (2021). Microbial fuel cells: Types, designs and applications. Renewable and Sustainable Energy Reviews, 148, 111257. https://doi.org/10.1016/j.rser.2021.111257 Kumar, R., Sharma, P., & Singh, S. (2021). Comparative analysis of bacterial isolates for electricity generation in microbial fuel cells. Journal of Environmental Biotechnology Research, 10(2), 45–56. Li, Y., Wang, X., & Feng, Y. (2023). Scaling up microbial fuel cells: Configuration, challenges, and future perspectives. Sustainable Energy Technologies and Assessments, 57 , Logan, B. E. (2008). Microbial fuel cells: Bioelectrochemical systems for renewable energy generation. Environmental Science & Technology, 42(23), 8593–8600. Lovley, D. R. (2012). Electrogenic microorganisms—A new source of renewable energy. Nature Reviews Microbiology, 10(6), 455–460. Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemi- osmotic type of mechanism. Nature, 191, 144–148. Muazu, U., & Aliyu-paiko, M. (2020). Evaluating the potentials of Carica papaya seed as phytobiotic to improve feed efficiency, growth performance and serum biochemical parameters in broiler chickens. IOSR Journal of Biotechnology and Biochemistry, 6(1), 8–18. Nguyen, P., & Lee, S. (2019). Electrogenic activity of E. coli from aquatic environments. Water Research and Biotechnology, 7(4), 212–223. Ojo, A., Sharma, P., & Singh, R. (2020). Biochemical identification and electrogenic potential of clinical bacterial isolates. Journal of Applied Microbiology and Bioenergy, 13(2), 78–90. Oluwafemi, O. P., Adegboye, A. O., & Ibrahim, M. Y. (2022). Bioelectric properties of Escherichia coli isolated from clinical samples using microbial fuel cells. African Journal of Microbial Energy Studies, 7(1), 33–44. Patel, S., & Verma, M. L. (2023). Harnessing microbial communities from complex waste streams for enhanced energy recovery in bio-electrochemical systems. Renewable and Sustainable Energy Reviews, 187 , 113741. Pinu, F. R., Granucci, N., Daniell, J., Li, T., Sonia, H., Isabel, C., & Jens, R. (2018). Metabolite secretion in microorganisms: The theory of metabolic overflow put to the test. Metabolomics, 14(43), 1–16. Sharma, P., & Kumar, S. (2024). Metabolomic adaptations of wastewater-derived Bacillus species and their correlation with enhanced power output in microbial fuel cells. Science of the Total Environment, 906, 167782. Sharma, S., Kumar, R., & Zhang, X. (2022). Voltage and current generation by wound-derived E. coli isolates in MFCs. Journal of Microbial Technology, 20(3), 112–125. Sharma, V., Saxena, S., & Yadav, R. (2022). Microorganisms: Diversity, functions, and biotechnological applications. Microbial Biotechnology Letters, 18(3), 45–54. Singh, D., Pratap, D., Baranwal, Y., Kumar, B., & Chaudhary, R. K. (2010). Microbial fuel cells: A green technology for power generation. Annals of Biological Research, 1(3), 128–138. Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2017). Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech, 7(1), 15. https://doi.org/10.1007/s13205-016- 0586-4 Soni, R., et al. (2022). Biodiversity and applications of microorganisms. In Microbial Diversity and Biotechnology. Springer, Singapore. Stephanie, T. (2018). Microbes and their importance. Microbiology Today, 45(2), 78–83. Stephen, A., & Joseph, B. (2013). Fecal coliforms and water quality indicators: A critical review. Journal of Water and Health, 11(3), 255–270. https://doi.org/10.2166/wh.2013.008 Yaqoob, A. A., et al. (2023). Microbial fuel cells: A comprehensive review of principles and applications. Journal of Cleaner Production, 389, 135-152. Zhang, X., Ali, F., & Adeyemo, O. (2019). Electrogenic performance of clinical vs environmental isolates in microbial fuel cells. Renewable Microbial Energy, 9(1), 29– Zhang, Y., & Li, B. (2024). Engineering Escherichia coli for enhanced extracellular electron transfer: A review of synthetic biology approaches. Biotechnology Advances, 72, Zinnah, M. A., Bari, S. M. N., Islam, M. T., Uddin, M. J., & Rahman, M. M. (2007). Characterization of Escherichia coli isolated from poultry and human. Bangladesh Journal of Veterinary Medicine, 5(1–2), 9–14. https://doi.org/10.3329/bjvm.v5i1.1335