Polycyclic Aromatic Hydrocarbon Levels in Water and Sediments of Sagbama River, Bayelsa State, Nigeria
Felagha, I, Ndu, C K, Augustine, A
Abstract
This study investigated the distribution and concentration of polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples from the Sagbama River. Water and sediment samples were collected in triplicates from Bolou-Orua, Toru-Angiama and Toru-Orua communities respectively. Concentration of PAHs in the samples were determined out using Gas Chromatography-Flame Ionization Detector (GC-FID). PAHs were detected at varying concentrations. For water samples: Toru-Orua (benzo(a)pyrene-52.59 mg/L, phenanthrene- 43.44 mg/L, naphthalene-36.78 mg/L, fluoranthene-34.41 mg/L, pyrene-28.02 mg/L, anthracene-27.65 mg/L, fluorene-25.11 mg/L, chrysene-16.52 mg/L); Bolou-Orua (fluoranthene-81.14 mg/L, acenaphthylene, 73.61 mg/L, anthracene-52.27 mg/L, chrysene- 64.96 mg/L, naphthalene-48.58 mg/L, fluorene-36.40 mg/L, benz(a)anthracene- 28.64 mg/L,); Toru-Angiama (phenanthrene- 120.62 mg/L, naphthalene-96.74 mg/L, benz(a)anthracene- 81.67 mg/L, pyrene-73.73 mg/L and chrysene-59.59 mg/L). For sediment samples: Toru-Orua (naphthalene- 912.88 mg/kg, chrysene- 764.62 mg/kg, phenanthrene- 716.64 mg/kg, pyrene- 622.01 mg/kg, acenaphthylene- 528.01 mg/kg, fluoranthene- 411.75 mg/kg, and fluorene 323.95 mg/kg); Bolou-Orua (acenaphthylene- 932.61 mg/kg, pyrene-857.09 mg/kg, chrysene- 673.56 mg/kg, fluorene- 548.42 mg/kg and phenanthrene- 314.71 mg/kg); Toru-Angiama (naphthalene- 575.74 mg/kg, chrysene- 422.41 mg/kg, anthracene- 323.13 mg/kg, benz(a) pyrene- 271.86 mg/kg pyrene- 269.60 mg/kg and acenaphthylene- 258.81 mg/kg). The findings of this study highlight significant variations in the levels of PAHs across different sampling sites in the Sagbama River and sediments in Bayelsa State, Nigeria, indicating diverse sources of pollution. Based on these findings, it is recommended that stricter control policies be placed on industrial discharges to limit PAHs contamination as well as continuous monitoring of PAHs levels for early det
Keywords
References
source, environmental impact, effect on human health and remediation. Egyptian
journal of petroleum, 25(1), 107-123.
Aborisade, A. B., Adetutu, A., & Adegbola, P. I. (2023). Polycyclic aromatic hydrocarbons
distribution in fish tissues and human health risk assessment on consumption of four
fish species collected from Lagos Lagoon, Nigeria. Environmental Science and
Pollution Research, 30(58), 122740-122754.
Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons:
a critical review of environmental occurrence and bioremediation. Environmental
management, 60, 758-783.
Altarawneh, M., & Ali, L. (2024). Formation of Polycyclic Aromatic Hydrocarbons (PAHs) in
Thermal Systems: A Comprehensive Mechanistic Review. Energy & Fuels, 38(22),
21735-21792.
Alves, C. A., Vicente, A. M. P., Gomes, J., Nunes, T., Duarte, M., & Bandowe, B. A. M. (2016).
Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs,
nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road
tunnel. Atmospheric research, 180, 128-137.
Anyahara, J. N. (2021). Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on the
environment: A systematic review. International Journal of Advanced Academic
Research, 7(3).
Boente, C., Baragaño, D., & Gallego, J. R. (2020). Benzo [a] pyrene sourcing and abundance
in a coal region in transition reveals historical pollution, rendering soil screening levels
impractical. Environmental pollution, 266, 115341.
Droppo, I. G., Krishnappan, B. G., & Lawrence, J. R. (2016). Microbial interactions with
naturally occurring hydrophobic sediments: influence on sediment and associated
contaminant mobility. Water research, 92, 121-130.
El-Bouhy, Z., Reda, R. M., Mohamed, F. A., Elashhab, M. W., & Abdel Rahman, A. N. (2024).
Polycyclic Aromatic Aydrocarbons (PAHs) Pollution Approaches in Aquatic
Ecosystems: Perils and Remedies Using Green Technologies. Zagazig Veterinary
Journal, 52(1), 49-87.
Fuge, R. (2019). Fluorene in the environment, a review of its sources and
geochemistry. Applied Geochemistry, 100, 393-406.
Hughes, C. B., Brown, D. M., Camenzuli, L., Redman, A. D., Arey, J. S., Vione, D. et al.
(2020). Can a chemical be both readily biodegradable AND very persistent (vP)?
Weight-of-evidence determination demonstrates that phenanthrene is not persistent in
the environment. Environmental Sciences Europe, 32, 1-19.
Idowu, O., Semple, K. T., Ramadass, K., O'Connor, W., Hansbro, P., & Thavamani, P. (2019).
Beyond the obvious: Environmental health implications of polar polycyclic aromatic
hydrocarbons. Environment international, 123, 543-557.
Jarvis, I. W., Dreij, K., Mattsson, Å., Jernström, B., & Stenius, U. (2014). Interactions between
polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk
assessment. Toxicology, 321, 27-39.
Jesus, F., Pereira, J. L., Campos, I., Santos, M., RĂ©, A., Keizer, J. & Serpa, D. (2022). A review
on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their
toxicity to benthic fauna. Science of the Total Environment, 820, 153282.
Kieta, K. A., Owens, P. N., Petticrew, E. L., French, T. D., Koiter, A. J., & Rutherford, P. M.
(2022). Polycyclic aromatic hydrocarbons in terrestrial and aquatic environments
following wildfire: a review. Environmental Reviews, 31(1), 141-167.
Kumar, M., Bolan, N. S., Hoang, S. A., Sawarkar, A. D., Jasemizad, T., Gao, B. & Rinklebe, J.
(2021). Remediation of soils and sediments polluted with polycyclic aromatic
hydrocarbons: to immobilize, mobilize, or degrade? Journal of Hazardous
Materials, 420, 126534.
Li, R., Hua, P., Zhang, J., & Krebs, P. (2020). Effect of anthropogenic activities on the
occurrence of polycyclic aromatic hydrocarbons in aquatic suspended particulate
matter: Evidence from Rhine and Elbe Rivers. Water Research, 179, 115901.
Lucadamo, L., Gallo, L. & Corapi, A. (2021). PAHs in an urban-industrial area: The role of
lichen transplants in the detection of local and study area scale patterns. Environmental
Pollution, 284, 117136.
Maleti?, S. P., Beljin, J. M., Ron?evi?, S. D., Grgi?, M. G. & Dalmacija, B. D. (2019). State of
the art and future challenges for polycyclic aromatic hydrocarbons is sediments:
sources, fate, bioavailability and remediation techniques. Journal of hazardous
materials, 365, 467-482.
Manzetti, S. (2013). Polycyclic aromatic hydrocarbons in the environment: environmental fate
and transformation. Polycyclic Aromatic Compounds, 33(4), 311-330.
Marvin, C. H., Berthiaume, A., Burniston, D. A., Chibwe, L., Dove, A., Evans, M., et al. (2021).
Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial
environments. Environmental Pollution, 285, 117442.
Mesquita, A. F., Gonçalves, F. J. & Gonçalves, A. M. (2023). The lethal and sub-lethal effects
of fluorinated and copper-based pesticides—A review. International Journal of
Environmental Research and Public Health, 20(4), 3706.
Mmom, P. C., & Igwe, C. F. (2012). Environmental degradation resulting from oil exploitation,
and population displacement in the Niger Delta, Nigeria. Journal of Environmental
Science and Engineering, 1(1), 127-138.
Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review
of polycyclic aromatic hydrocarbons in water sources, their effects and
treatments. Science of the total environment, 696, 133971.
Nduka, J. K., Obumselu, F. O., & Umedum, N. L. (2012). Crude oil and fractional spillages
resulting from exploration and exploitation in Niger-Delta region of Nigeria: a review
about the environmental and public health impact. Crude oil exploration in the world.
Oliveira, F. J. S., da Rocha Calixto, R. O., Felippe, C. E. C. & de Franca, F. P. (2013). Waste
management and contaminated site remediation practices after oil spill: a case
study. Waste management & research, 31(12), 1190-1194.
Onyena, A. P., Folorunso, O. M., Nwanganga, N., Udom, G. J., Ekhator, O. C., Frazzoli, C. et
al. (2024). Engaging one health in heavy metal pollution in some selected Nigerian
Niger delta cities. A Systematic review of pervasiveness, bioaccumulation and subduing
environmental health challenges. Biological Trace Element Research, 202(4), 1356-
Pal, D., & Sen, S. (2024). Emerging Petroleum Pollutants and Their Adverse Effects on the
Environment. In Impact of Petroleum Waste on Environmental Pollution and its
Sustainable Management Through Circular Economy (pp. 103-137). Cham: Springer
Nature Switzerland.
Pampanin, D. M., & Sydnes, M. O. (2013). Polycyclic aromatic hydrocarbons a constituent of
petroleum: presence and influence in the aquatic environment. Hydrocarbon, 5, 83-118.
Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic
hydrocarbons:
sources,
toxicity,
and
remediation
approaches. Frontiers
in
Microbiology, 11, 562813.
Priyadarshanee, M., Mahto, U., & Das, S. (2022). Mechanism of toxicity and adverse health
effects
of
environmental
pollutants.
In Microbial
biodegradation
and
bioremediation (pp. 33-53). Elsevier.
Quantin, C., Joner, E. J., Portal, J. M., & Berthelin, J. (2005). PAH dissipation in a contaminated
river sediment under oxic and anoxic conditions. Environmental pollution, 134(2), 315-
Raimi, M. O., Ayibatonbira, A. A., Anu, B., Odipe, O. E., & Deinkuro, N. S. (2019). 'Digging
Deeper' Evidence on Water Crisis and Its Solution in Nigeria for Bayelsa State: A Study
of Current Scenario. International Journal of Hydrogen energy, 3(4), 244-257.
Ramesh, A., Archibong, A. E., Hood, D. B., Guo, Z., & Loganathan, B. G. (2011). Global
environmental distribution and human healt