IIARD International Journal of Economics and Business Management (IJEBM )

E-ISSN 2489-0065
P-ISSN 2695-186X
VOL. 11 NO. 2 2025
DOI: 10.56201/ijebm.vol.11.no2.2025.pg16.32


Deterring Capital Flight from Africa through Improvement in Quality of Governance

B A Adeniyi, PhD


Abstract


The need to provide further in-sight on how alternative indicators of quality of governance determine capital flights from African countries serve as impetus for this study which not only investigated the effects of alternative indicators of quality of governance (when they were bundled as done by most previous studies) on capital flight statistics but also examined the effect of each of the indicator individually (which no known study had done). To achieve this, capital flight statistics computed by various methods as presented in Table A1 in the appendix were used as the dependent variables while indicators of quality of governance sourced from the World Bank Governance Indicators (WGI) database of the World Bank served as the independent variables. Also, the investment diversion theory of capital flight was adapted as the theoretical framework upon which the models that were estimated in this study were derived. The findings of the study revealed that five out of the ten governance indicators that were tested has the expected negative effects; two of the remaining five has the unexpected positive effects while each of the remaining three has no effect. Following from this empirical evidence, it is concluded that quality of governance has varying deterring effects on capital flight.


keywords:

Capital Flight, Governance Indicators, African Countries


References:


Acemoglu, D., Johnson, S., Robinson, J., & Thaicharoen, Y. (2003). Institutional causes,
macroeconomic symptoms: Volatility, crises and growth. Journal of Monetary Economics,
50 (1), 49-123.
Ahmad, B., & Sahto, Q. (2015). Determinants of capital flight in pakistan. IBT Journal
of Business Studies (Formerly Journal of Management and Social Sciences),11(4), 234-
https://www.researchgate.net/publication/296253143
Ali, A. & Walters, B. (2010). Causes of capital flight from Sub-Saharan Africa.
University of Manchester Working Papers. 4(2), 234-287
Asongu, S., & Nwachukwu, J. (2020). Fighting capital flight in Africa: Evidence from bundling
and unbundling governance. Working Papers of the African Governance and Development
Institute. African Governance and Development Institute. No 16/047.
Assibey, D., & Danquah, R. (2017). An econometric investigation of capital flight. Applied
Economics Journal. 23 (1), 73- 85
Boyce, J. K., & Ndikumana, L. (2012). Capital Flight from Sub-Saharan African Countries:
Updates 1970-2010. PERI Research Report, Amherst.
Domfeh, K. O. (2015). Capital Flight and Institutional Governance in Sub-Saharan Africa: The
Role of Corruption. An unpublished M.Sc. thesis submitted to University of Ghana.
available at http://197.255.68.203/handle/123456789/8505
Hermes, N., & Lensink, R. (2002). Capital flight and the uncertainty of government policies,
Economics Letters, 71(3), 377-381
Kar, D., & Spangers, J. (2015). Illicit Financial Flows from Developing Countries: 2004-2013.
Global financial integrity journal http://www.gfintegrity.org/issue/illicit-financial-flows/
Kiss, G. D., & Isaac K. A. (2018). Macro-economic Volatility and Capital Flight in SSA: A
Dynamic Panel Data Estimation of some selected HIPC Countries. Mediterranean Journal
of Social Science, 9(5), 160-169
Le, Q., & Zak, P. (2006). Effect of Political risk on capital flight. Journal of Finance, 25(2), 308-
329
Le, Q., & Zak, P. (2008). Political Risk and Capital Flight. Journal of International Money and
Finance, 25, 67-74
Ndikumana, L., & Boyce, J. K. (2019). Capital flight, foreign direct investment and natural
resources in Africa. Working Paper, No. 2019-12, University of Massachusetts, Department
of Economics, Amherst, MA. http://hdl.handle.net/10419/202966
Nwagi,W. M., Njuguna, A. G., & Achoki, G. O. (2019). Relationship between foreign direct
investment and capital flight in Kenya: 1998-2018. Integrated Journal of Business and
Economics, 4(5), 251-267.
APPENDIX
Table A1: Capital Flight by Countries: 1985-2020 mean Values in 2020 constant US$ Billions,
Computed
under the Seven Methods of HOT, WB, MISINV, HWM, HM, HW and MW
Countries
HOT
WB
MISINV
HWM
HM
HW
MW
1
Algeria
-9.75
1.52
4.72
2.82
2.28
2.00
4.95
2
Angola
-7.58
9.61
12.6
8.59
3.83
6.36
15.19
3
Benin
-6.31
0.11
0.15
0.22
0.19
0.19
0.18
4
Botswana
-6.23
0.27
-1.1
-1.11
-1.46
-0.94
-0.93
5
Burkina Faso
-5.98
0.11
-0.59
-4.99
-5.98
-5.01
-0.51
6
Burundi
-1.28
0.12
0.32
0.53
0.54
0.48
0.34
7
Cameroon
-0.82
0.09
0.92
1.13
1.26
0.99
0.89
8
Cape Verde
-0.34
0.01
0.38
0.15
0.16
0.08
0.36
9
Central African
Republic
-0.3
0.07
0.19
0.08
0.05
0.05
0.2
10 Chad
-
1.66
0.23
1.54
0.77
1.51
0.81
11 Comoros
-
-
0.04
0.08
0.1
0.08
0.04
12 Congo, Dem.Rep.
-
-1.19
0.78
0.26
1.04
0.14
0.31
13 Congo, Rep.
-
3.88
1.37
5.17
3.65
4.98
2.66
14 Cote d'Ivoire
-
0.55
-2.59
4.85
5.46
5.43
-2.23
15 Djibouti
-
0.53
1.84
1.91
1.89
1.61
1.91
16 Egypt
-
2.8
0.42
4.74
3.85
4.74
1.39
17 Equatorial Guinea
0.01
-
2.32
0.41
0.44
-
2.17
18 Eritrea
0.02
-
-
-
-
-
-
19 Eswatini
0.8
0.43
0.64
1.06
0.88
0.23
0.49
20 Ethiopia
0.04
-
8.18
5.39
6.21
4.02
7.65
21 Gabon
0.04
0.39
0.94
0.09
-0.16
-0.08
1.02
22 Gambia
0.06
0.08
0.19
0.18
0.16
0.15
0.21
23 Ghana
0.09
-0.6
8.98
5.4
6.59
3.9
8.18
24 Guinea
0.09
-0.44
4.05
1.39
1.83
0.69
3.63
25 Guinea-Bissau
0.13
0.41
-0.13
5.14
5.85
5.28
0.02
26 Kenya
0.16
-1.77
1.11
1.47
2.84
1.33
0.41
27 Lesotho
0.21
-0.29
0.43
0.1
0.29
0.02
0.3
28 Liberia
0.32
-0.92
1.97
-0.11
0.41
-0.45
1.51
29 Libya
0.36
-0.85
5.61
-7.52
-8.52
-8.71
4.94
30 Madagascar
0.49
-0.06
3.98
0.68
0.75
-0.03
3.7
31 Malawi
0.55
-3.26
4.24
3.82
6.5
3.18
2.8
32 Mali
0.66
0.03
0.91
0.63
0.71
0.48
0.85
33 Mauritania
0.84
-0.19
1.75
1.12
1.41
0.83
1.57
34 Mauritius
0.74
-1.51
2.91
-0.27
0.57
-0.79
2.18
Source: Author`s Computation, 2022. Explanatory Notes: The acronyms HOT, WB,
MISINV, HWM, HM, HW and MW respectively stand for the average values of capital flight
computed with Hot-Money method, World Bank method, Trade Mis-invoicing method,
HWM method, HM method, HW method and MW method respectively.
35 Morocco
0.91
0.01
6.67
1.89
2.08
0.72
6.24
36 Mozambique
1.09
0.18
1.38
2.93
3.33
2.75
1.35
37 Namibia
1.10
-1.72
0.45
-1.08
-0.21
-1.17
-0.19
38 Niger
1.11
-0.05
1.02
0.42
0.51
0.24
0.94
39 Nigeria
1.34
11.29
2.74
14.52
10.03
14.21
6.57
40 Rwanda
1.41
-5.32
0.55
-9.01
-7.34
-9.25
-1.38
41 Sao Tome and Principe
1.48
-
0.19
0.08
0.09
0.05
0.18
42 Senegal
1.57
0.22
0.02
0.42
0.36
0.42
0.1
43 Seychelles
1.63
-0.01
0.51
0.09
0.1
-0.01
0.47
44 Sierra Leone
2.68
-1.36
1.36
3.92
5.48
3.79
0.79
45 Somalia
3.13
-
0.35
0.06
0.07
-
0.33
46 South Africa
3.84
-
-1.87
-1.01
-1.16
-0.69
-1.75
47 South Sudan
3.45
-
-
-
-
-
-
48 Sudan
4.75
-6.57
6.77
-7.51
-4.92
-8.84
3.99
49 Tanzania
4.98
0.01
0.25
1.16
1.36
1.14
0.24
50 Togo
5.32
-0.06
1.94
0.35
0.41
0
1.79
51 Tunisia
5.98
-0.13
9.24
2.93
3.34
1.31
8.59
52 Uganda
6.06
0.99
10.18
2.89
2.57
1.09
9.87
53 Zambia
7.02
5.11
0.75
-2.3
-5.98
-2.56
2.52
54 Zimbabwe
9.69
7.28
0.09
9.7
6.91
9.81
2.67
Average
0.75
0.39
2.12
1.21
1.14
0.84
2.11


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo