RESEARCH JOURNAL OF PURE SCIENCE AND TECHNOLOGY (RJPST )

E-ISSN 2579-0536
P-ISSN 2695-2696
VOL. 7 NO. 5 2024
DOI: 10.56201/rjpst.v7.no5.2024.pg12.25


Evaluating the Geological and Soil Characteristics Influencing Landslide Susceptibility in Anambra State, Nigeria

Odoh, Benard Ifeanyi and Nwokeabia, Charity Nkiru


Abstract


This study investigates soil erodibility in three Local Government Areas (LGAs) within Anambra State, Nigeria—Ekwusigo, Ihiala, and Ogbaru—situated in the lower Niger River Basin prone to frequent and severe flooding. The aim is to assess geological and soil characteristics influencing landslide susceptibility. The methodology involves identifying and characterizing soil types, calculating the Soil Erodibility Factor (K) using empirical formulas, and mapping erosion susceptibility. Data from the Soil Map of the World (version 3.6) were used, corrected for accuracy, and integrated into geographic projections. Analysis included William’s equation to calculate K factors based on soil properties such as sand, silt, clay, and organic matter content. Results highlight diverse geological formations: Ameki Group (34.24%), Benin Formation (0.26%), Ogwashi-Asaba Formation (1.59%), River Niger (1.86%), Sands, Gravels, and Clay (42.36%), and Sombreiro Warri Deltaic Plain (19.69%). Soil types identified include Dystric Nitosols (K = 0.0178) covering 449.11 km² and Gleysols (K = 0.0189) covering 283.95 km², each exhibiting unique erosion susceptibilities. Gleysols are characterized by poor drainage and high-water retention, posing higher landslide risks during heavy rainfall compared to Dystric Nitosols. The correlation between K factors and hydrological data, showing Gleysols as more vulnerable to landslides in wet conditions. Recommendations include targeted erosion control measures like terracing, vegetative buffers, and improved drainage systems for high-risk zones. Maintaining vegetative cover and implementing sustainable land management practices are crucial for mitigating erosion and landslide risks. This study provides a detailed understanding of geological and soil factors affecting landslide susceptibility in Anambra State. It underscores the need for tailored soil conservation and landslide mitigation strategies aligned with spec


keywords:

Dystric Nitosols, Geological formations, Gleysols, Soil erodibility


References:


Achasov, A., Achasova, A., Titenko, G., Seliverstov, O., & Krivtsov, V. (2021). Assessment of the
Ecological Condition of Soil Cover Based on Remote Sensing Data: Erosional Aspect. SHS
Web of Conferences, 100, 05014. https://doi.org/10.1051/shsconf/202110005014
Adewumi, R., Agbasi, O., & Mayowa, A. (2023). Investigating groundwater potential in northeastern
basement complexes: A Pulka case study using geospatial and geo-electrical techniques.
HydroResearch, 6, 73–88. https://doi.org/10.1016/j.hydres.2023.02.003
Ahmad, N. S. B. N., Mustafa, F. B., Yusoff, S. Y. M., & Didams, G. (2020). A systematic review of
soil erosion control practices on the agricultural land in Asia. International Soil and Water
Conservation Research/International Soil and Water Conservation Research, 8(2), 103–115.
https://doi.org/10.1016/j.iswcr.2020.04.001
Aigbadon, G. O., Ocheli, A., & Akudo, E. O. (2021). Geotechnical Evaluation of Gully Erosion and
Landslides Materials and their Impact in Iguosa and its Environs, Western Anambra Basin,
Nigeria. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-390812/v1
Alaboz, P., Dengiz, O., Demir, S., & ?enol, H. (2021). Digital mapping of soil erodibility factors
based on decision tree using geostatistical approaches in terrestrial ecosystem. Catena, 207,
https://doi.org/10.1016/j.catena.2021.105634
Aladejana, O. O., Salami, A. T., & Adetoro, O. I. O. (2018). Hydrological responses to land
degradation in the Northwest Benin Owena River Basin, Nigeria. Journal of Environmental
Management, 225, 300–312. https://doi.org/10.1016/j.jenvman.2018.07.095
Amah, J. I., Aghamelu, O. P., Omonona, O. V., & Onwe, I. M. (2020). A Study of the Dynamics of
Soil Erosion Using Rusle2 Modelling and Geospatial Tool in Edda-Afikpo Mesas, South
Eastern Nigeria. Pakistan Journal of Geology, 4(2), 56–71. https://doi.org/10.2478/pjg-2020-
0007
Amah, J. I., Aghamelu, O. P., Omonona, O. V., Onwe, I. M., & Agbi, I. O. (2021). Analysis of the
impacts of hydrology, soil properties, and geotechnics on gully propagation on the Edda-
Afikpo Mesas of the Lower Cross River watershed (southeastern Nigeria). Journal of African
Earth Sciences, 174, 104074. https://doi.org/10.1016/j.jafrearsci.2020.104074
Aslam, B., Maqsoom, A., Alaloul, W. S., Musarat, M. A., Jabbar, T., & Zafar, A. (2021). Soil erosion
susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district
Chitral, Pakistan. Ain Shams Engineering Journal/Ain Shams Engineering Journal, 12(2),
1637–1649. https://doi.org/10.1016/j.asej.2020.09.015
Ayadiuno, R. U., Ndulue, D. C., Mozie, A., & Ndichie, C. (2021). The Underlying Factors of Soil
Susceptibility to Erosion in Central Parts of Southeastern Nigeria. Al?nteri Zirai Bilimler
Dergisi./Al?nteri
Zirai
Bilimler
Dergisi?:,
36(2),
196–207.
https://doi.org/10.47059/alinteri/v36i2/ajas21134
Azare, I., Abdullahi, Adebayo, A., Dantata, I., & Duala, T. (2020). Deforestation, desert
encroachment, climate change and agricultural production in the Sudano-Sahelian Region of
Nigeria. Journal of Applied Science & Environmental Management, 24(1), 127.
https://doi.org/10.4314/jasem.v24i1.18
Didoné, E. J., Minella, J. P. G., & Piccilli, D. G. A. (2021). How to model the effect of mechanical
erosion control practices at a catchment scale? International Soil and Water Conservation
Research/International Soil and Water Conservation Research, 9(3), 370–380.
https://doi.org/10.1016/j.iswcr.2021.01.007
Egbinola, C., Olaniran, H., & Amanambu, A. (2015). Flood management in cities of developing
countries: the example of Ibadan, Nigeria. Journal of Flood Risk Management, 10(4), 546–
https://doi.org/10.1111/jfr3.12157
Faboya, O. L., Sonibare, O. O., Xu, J., Olowookere, N., & Liao, Z. (2020). Mineralogical and pore
structure of organic-rich deltaic shales and sub-bituminous coals from early Maastrichtian
Mamu Formation, Anambra Basin, Nigeria. SN Applied Sciences/SN Applied Sciences, 2(12).
https://doi.org/10.1007/s42452-020-03899-1
Guo, L., Yang, Y., Zhao, Y., Li, Y., Sui, Y., Tang, C., Jin, J., & Liu, X. (2021). Reducing topsoil
depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till.
Land Degradation & Development, 32(9), 2849–2860. https://doi.org/10.1002/ldr.3868
Hall, S. J., Huang, W., Timokhin, V. I., & Hammel, K. E. (2020). Lignin lags, leads, or limits the
decomposition
of
litter
and
soil
organic
carbon.
Ecology,
101(9).
https://doi.org/10.1002/ecy.3113
Luo, T., Liu, W., Xia, D., Xia, L., Guo, T., Ma, Y., Xu, W., & Hu, Y. (2022). Effects of land use
types on soil erodibility in a small karst watershed in western Hubei. PeerJ, 10, e14423.
https://doi.org/10.7717/peerj.14423
Ma, L., Li, J., & Liu, J. (2020). Effects of antecedent soil water content on infiltration and erosion
processes on loessial slopes under simulated rainfall. Nordic Hydrology, 51(5), 882–893.
https://doi.org/10.2166/nh.2020.013
Mwaniki, M. W., Agutu, N. O., Mbaka, J. G., Ngigi, T. G., & Waithaka, E. H. (2015). Landslide
scar/soil erodibility mapping using Landsat TM/ETM+ bands 7 and 3 Normalised Difference
Index: A case study of central region of Kenya. Applied Geography, 64, 108–120.
https://doi.org/10.1016/j.apgeog.2015.09.009
Nebeokike, U. C., Igwe, O., Egbueri, J. C., & Ifediegwu, S. I. (2020). Erodibility characteristics and
slope stability analysis of geological units prone to erosion in Udi area, southeast Nigeria.
Modeling Earth Systems and Environment, 6(2), 1061–1074. https://doi.org/10.1007/s40808-
020-00741-w
Okeke, C. A., Azuh, D., Ogbuagu, F. U., & Kogure, T. (2020). Assessment of land use impact and
seepage erosion contributions to seasonal variations in riverbank stability: The Iju River, SW
Nigeria.
Groundwater
for
Sustainable
Development,
11,
https://doi.org/10.1016/j.gsd.2020.100448
Omietimi, E. J., Chouhan, A. K., Lenhardt, N., Yang, R., & Bumby, A. J. (2021). Structural
interpretation of the south-western flank of the Anambra Basin (Nigeria) using satellite-
derived WGM 2012 gravity data. Journal of African Earth Sciences, 182, 104290.
https://doi.org/10.1016/j.jafrearsci.2021.104290
Rehm, R., Zeyer, T., Schmidt, A., & Fiener, P. (2021). Soil erosion as transport pathway of
microplastic from agriculture soils to aquatic ecosystems. Science of the Total Environment,
795, 148774. https://doi.org/10.1016/j.scitotenv.2021.148774
Rosskopf, C. M., Di Iorio, E., Circelli, L., Colombo, C., & Aucelli, P. P. (2020). Assessing spatial
variability and erosion susceptibility of soils in hilly agricultural areas in Southern Italy.
International Soil and Water Conservation Research/International Soil and Water
Conservation Research, 8(4), 354–362. https://doi.org/10.1016/j.iswcr.2020.09.005
Seabloom, E. W., Adler, P. B., Alberti, J., Biederman, L., Buckley, Y. M., Cadotte, M. W., Collins,
S. L., Dee, L., Fay, P. A., Firn, J., Hagenah, N., Harpole, W. S., Hautier, Y., Hector, A.,
Hobbie, S. E., Isbell, F., Knops, J. M. H., Komatsu, K. J., Laungani, R., . . . Borer, E. T.
(2021). Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem
productivity over time. Ecology, 102(2). https://doi.org/10.1002/ecy.3218
Songu, G., Abu, R., Temwa, N., Yiye, S., Wahab, S., & Mohammed, B. (2021). Analysis of Soil
Erodibility Factor for Hydrologic Processes in Kereke Watershed, North Central Nigeria.
Journal of Applied Science and Environmental Management, 25(3), 425–432.
https://doi.org/10.4314/jasem.v25i3.18
Tian, D., Xie, Q., Fu, X., & Zhang, J. (2020). Experimental study on the effect of fine contents on
internal erosion in natural soil deposits. Bulletin of Engineering Geology and the
Environment, 79(8), 4135–4150. https://doi.org/10.1007/s10064-020-01829-4
Touma, B. R., Kondolf, G. M., & W


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo