WORLD JOURNAL OF INNOVATION AND MODERN TECHNOLOGY (WJIMT )
E-ISSN 2504-4766
P-ISSN 2682-5910
VOL. 8 NO. 4 2024
DOI: 10.56201/wjimt.v8.no4.2024.pg90.112
Odoh, Benard Ifeanyi and Nwokeabia, Charity Nkiru
Flood risk assessment is critical for effective flood management and mitigation strategies. Understanding spatial variability in flood susceptibility helps in designing targeted interventions. This study aims to evaluate flood risk in a specified area by integrating multiple hydrological and topographical parameters. The assessment incorporates drainage density, slope, land use and land cover (LULC), rainfall, elevation, and proximity to rivers and roads. Data were analyzed to categorize regions into five flood risk levels: very low, low, moderate, high, and very high. The study reveals significant spatial variability in flood risk. High-risk areas, constituting 37.28% of the study area, are primarily near drainage networks and steep slopes. Regions with low to moderate drainage density, covering 40.25%, are prone to waterlogging, while areas with high drainage density, accounting for 59.75%, manage local runoff but may exacerbate downstream flooding. The LULC analysis shows that forested areas (43.62%) mitigate flood risk, whereas built-up areas (35.20%) increase it. Higher rainfall in the southern part of the study area and varied elevation also influence flood risk distribution. High-risk regions need robust flood defenses and efficient drainage systems. Sustainable land management practices and advanced flood control measures are essential for mitigating flood risk, particularly in high rainfall and steep slope areas. This study uniquely combines multiple parameters to provide a comprehensive flood risk assessment, offering valuable insights for targeted flood mitigation strategies and enhancing regional flood resilience.
Drainage Density, Hydrological Studies, Slope Analysis, Spatial Variability,
Adewumi, R., Agbasi, O., & Mayowa, A. (2023). Investigating groundwater potential in
northeastern basement complexes: A Pulka case study using geospatial and geo-electrical techniques.
HydroResearch, 6, 73–88.
https://doi.org/10.1016/j.hydres.2023.02.003
Ahlmer, A. K., Cavalli, M., Hansson, K., Koutsouris, A. J., Crema, S., & Kalantari, Z. (2018).
Soil moisture remote-sensing applications for identification of flood-prone areas along
transport infrastructure. Environmental Earth Sciences, 77(14).
https://doi.org/10.1007/s12665-018-7704-z
Aja, D., Elias, E., & Obiahu, O. H. (2019). Flood risk zone mapping using rational model in a
highly weathered Nitisols of Abakaliki Local Government Area, South-eastern Nigeria.
Geology, Ecology and Landscapes, 4(2), 131–139.
https://doi.org/10.1080/24749508.2019.1600912
Akaolisa, C. C., Agbasi, O. E., Etuk, S. E., Adewumi, R., & Okoli, E. A. (2023). Evaluating
the Effects of Real Estate Development in Owerri, Imo State, Nigeria: Emphasizing
Changes in Land Use/Land Cover (LULC). Journal of Landscape Ecology, 16(2), 98–
https://doi.org/10.2478/jlecol-2023-0012
Azizian, A., & Brocca, L. (2019). Determining the best remotely sensed DEM for flood
inundation mapping in data sparse regions. International Journal of Remote Sensing,
41(5), 1884–1906. https://doi.org/10.1080/01431161.2019.1677968
Buba, F. N., Ojinnaka, O. C., Ndukwu, R. I., Agbaje, G. I., & Orofin, Z. O. (2021). Assessment
of flood vulnerability in some communities in Lokoja, Kogi State, Nigeria, using
Participatory Geographic Information Systems. International Journal of Disaster Risk
Reduction, 55, 102111. https://doi.org/10.1016/j.ijdrr.2021.102111
Chukwuma, E., Okonkwo, C., Ojediran, J., Anizoba, D., Ubah, J., & Nwachukwu, C. (2021).
A GIS based flood vulnerability modelling of Anambra State using an integrated
IVFRN-DEMATEL-ANP model. Heliyon, 7(9), e08048.
https://doi.org/10.1016/j.heliyon.2021.e08048
Da Silva, L. B. L., Alencar, M. H., & De Almeida, A. T. (2020). Multidimensional flood risk
management under climate changes: Bibliometric analysis, trends and strategic
guidelines for decision-making in urban dynamics. International Journal of Disaster
Risk Reduction, 50, 101865. https://doi.org/10.1016/j.ijdrr.2020.101865
Dike, V. N., Lin, Z. H., & Ibe, C. C. (2020). Intensification of Summer Rainfall Extremes over
Nigeria during Recent Decades. Atmosphere, 11(10),
https://doi.org/10.3390/atmos11101084
Dim, C. I. P., Onuoha, K. M., Okwara, I. C., Okonkwo, I. A., & Ibemesi, P. O. (2019). Facies
analysis and depositional environment of the Campano – Maastrichtian coal-bearing
Mamu Formation in the Anambra Basin, Nigeria. Journal of African Earth Sciences,
152, 69–83. https://doi.org/10.1016/j.jafrearsci.2019.01.011
Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A.,
Mongelli, I., Frieler, K., Betts, R. A., & Feyen, L. (2018). Increased human and
economic losses from river flooding with anthropogenic warming. Nature Climate
Change, 8(9), 781–786. https://doi.org/10.1038/s41558-018-0257-z
Dwarakish, G. S., Pai, B. J., & Rajeesh, R. (2024). Urban Flood Hazard Zonation in Bengaluru
Urban District, India. Journal of Landscape Ecology, 17(1), 89–106.
https://doi.org/10.2478/jlecol-2024-0006
Egbinola, C., Olaniran, H., & Amanambu, A. (2015). Flood management in cities of
developing countries: the example of Ibadan, Nigeria. Journal of Flood Risk
Management, 10(4), 546–554. https://doi.org/10.1111/jfr3.12157
Ekeu-Wei, I. T., Blackburn, G. A., & Giovannettone, J. (2020). Accounting for the Effects of
Climate Variability in Regional Flood Frequency Estimates in Western Nigeria.
Journal of Water Resource and Protection, 12(08), 690–713.
https://doi.org/10.4236/jwarp.2020.128042
Ezeokoli, F. O., Okoye, P. U., & Ugochukwu, S. C. (2015). The Upshot of the 2012 Flooding
on Structural Components and Fabrics of Buildings at Ogbaru, Anambra State Nigeria.
3(4), 129–136. https://doi.org/10.12691/ajcea-3-4-3
George, N. J., Agbasi, O. E., Umoh, J. A., Ekanem, A. M., Ejepu, J. S., Thomas, J. E., &
Udoinyang, I. E. (2022). Contribution of electrical prospecting and spatiotemporal
variations to groundwater potential in coastal hydro-sand beds: a case study of Akwa
Ibom State, Southern Nigeria. Acta Geophysica, 71(5), 2339–2357.
https://doi.org/10.1007/s11600-022-00994-2
Huang, Y., Chen, X., Li, F., Zhang, J., Lei, T., Li, J., Chen, P., & Wang, X. (2018). Velocity
of water flow along saturated loess slopes under erosion effects. Journal of Hydrology,
561, 304–311. https://doi.org/10.1016/j.jhydrol.2018.03.070
Idowu, D., & Zhou, W. (2019). Performance Evaluation of a Potential Component of an Early
Flood Warning System—A Case Study of the 2012 Flood, Lower Niger River Basin,
Nigeria. Remote Sensing, 11(17), 1970. https://doi.org/10.3390/rs11171970
Ifeanyichukwu, K. A., Okeyeh, E., Agbasi, O. E., Moses, O. I., & Ben-Owope, O. (2021).
Using Geo-electric Techniques for Vulnerability and Groundwater Potential Analysis
of Aquifers in Nnewi, South Eastern Nigeria. Journal of Geology, Geography and
Geoecology, 30(1), 43–52. https://doi.org/10.15421/112105
Jimme, M. A., Bashir, A., & Adebayo, A. A. (2016). Spatial Distribution Pattern and Terrain
Analysis of Urban Flash Floods and Inundated Areas in Maiduguri Metropolis, Borno
State, Northeast, Nigeria. Journal of Geographic Information System, 08(01), 108–120.
https://doi.org/10.4236/jgis.2016.81011
Kandissounon, G. A., Kalra, A., & Ahmad, S. (2018). Integrating System Dynamics and
Remote Sensing to Estimate Future Water Usage and Average Surface Runoff in Lagos,
Nigeria. Civil Engineering Journal, 4(2), 378. https://doi.org/10.28991/cej-030998
Komolafe, A. A., Awe, B. S., Olorunfemi, I. E., & Oguntunde, P. G. (2020). Modelling flood-
prone area and vulnerability using integration of multi-criteria analysis and HAND
model in the Ogun River Basin, Nigeria. Hydrological Sciences Journal, 65(10), 1766–
https://doi.org/10.1080/02626667.2020.1764960
Liu, J., & Niyogi, D. (2019). Meta-analysis of urbanization impact on rainfall modification.
Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-42494-2
Mahmoud, M. I., Duker, A., Conrad, C., Thiel, M., & Ahmad, H. S. (2016). Analysis of
Settlement Expansion and Urban Growth Modelling Using Geoinformation for
Assessing Potential Impacts of Urbanization on Climate in Abuja City, Nigeria. Remote
Sensing, 8(3), 220. https://doi.org/10.3390/rs8030220
Malgwi, M. B., Schlögl, M., & Keiler, M. (2021). Expert-based versus data-driven flood
damage models: A comparative evaluation for data-scarce regions. International
Journal
of Disaster Risk Reduction, 57,
https://doi.org/10.1016/j.ijdrr.2021.102148
Ogunrinde, A. T., Oguntunde, P. G., Akinwumiju, A. S., & Fasinmirin, J. T. (2019). Analysis
of recent changes in rainfall and drought indices in Nigeria, 1981–2015. Hydrological
Sciences Journal, 64(14), 1755–1768.
https://doi.org/10.1080/02626667.2019.1673396
Okoli, E., Akaolisa, C. C. Z., Ubechu, B. O., Agbasi, O. E., & Szafarczyk, A. (2024). Using
VES and GIS-Based DRASTIC Analysis to Evaluate Groundwater Aquifer
Contamination Vulnerability in Owerri, Southeastern Nigeria. Ecological Questions,
35(3), 1–27. https://doi.org/10.12775/eq.2024.031
Olorunfemi, I. E., Komolafe, A. A., Fasinmirin, J. T., Olufayo, A. A., & Akande, S. O. (2020).
A GIS-based assessment of the potential soil erosion and flood hazard zones in Ekiti
State, Southwestern Nigeria using integrated RUSLE and HAND models. Catena, 194,
https://doi.org/10.1016/j.catena.2020.104725
Owokotomo, A. I., Ajayi, O. O., Alabi, O. O., & Chukwuka, A. V. (2020). Watershed land use,
surface water vulnerability and public health risks of two urban rivers, Ado-Ekiti,
South-West
Nigeria. SN Applied Sc