IIARD INTERNATIONAL JOURNAL OF GEOGRAPHY AND ENVIRONMENTAL MANAGEMENT (IJGEM )

E-ISSN 2504-8821
P-ISSN 2695-1878
VOL. 10 NO. 9 2024
DOI: 10.56201/ijgem.v10.no9.2024.pg58.73


Geological Characterization and Soil Erodibility Factors in Parts of Southeastern, Nigeria

Odoh, Benard Ifeanyi, Nwokeabia, Charity Nkiru and Odinye, Arinzechukwu Chukwuebuka


Abstract


This study focuses on analyzing soil erodibility in five Local Government Areas (LGAs) in Imo State, Nigeria: Isu, Mbaitoli, Njaba, Orlu, and Oru East. These areas are prone to flooding due to their location within the lower Niger River Basin, exacerbating soil erosion. The study aims to evaluate geological and soil characteristics influencing landslide susceptibility in these LGAs. The aim of this study is to assess soil erodibility factors and geological characteristics in Imo State, Nigeria, focusing on Isu, Mbaitoli, Njaba, Orlu, and Oru East LGAs. It involves identifying predominant soil types, calculating Soil Erodibility Factor (K), and mapping erosion susceptibilities. The study correlates data with hydrological and climatic information to analyze landslide risks and propose mitigation strategies. This study utilizes data primarily from the Soil Map of the World, version 3.6, corrected for errors and updated for relevance. Geographic Information System (GIS) tools are employed for spatial analyses, including mapping soil types and erosion susceptibilities. The study also integrates topographical data to understand elevation variations and geological formations impacting soil characteristics. The study identifies two primary soil types: Dystric Nitosols covering 578.63 km² and Xanthic Ferralsols covering 0.064 km². Dystric Nitosols have a low Soil Erodibility Factor (K) of 0.017769 t.ha.h.ha/MJ/mm, indicating good structural stability and less susceptibility to erosion. In contrast, Xanthic Ferralsols exhibit a higher K-factor of 0.018724 t.ha.h.ha/MJ/mm, suggesting greater vulnerability to erosion due to their acidic nature and lower fertility. The spatial distribution of soil types and their erodibility factors highlights significant implications for agricultural productivity and environmental conservation. Dystric Nitosols, with their high fertility and good structure, support diverse crops and ecosystems. Effectiv


keywords:

Flood vulnerability, Imo State, Landslide susceptibility, Soil erodibility, Soil types


References:


Abbasi, S., Ashayeri, S. Y., Jafarzadeh, N., Fakhradini, S. S., Alirezazadeh, M., Ebrahimi, P.,
Peely, A. B., Rezaei, N., Mokhtarzadeh, Z., Naraki, H., & Pashaei, R. (2022).
Hydrological and hydrogeological characteristics and environmental assessment of
Hashilan Wetland, a national heritage in NW Iran. Ecohydrology & Hydrobiology,
22(1), 141–154. https://doi.org/10.1016/j.ecohyd.2021.08.014
Achasov, A., Achasova, A., Titenko, G., Seliverstov, O., & Krivtsov, V. (2021). Assessment
of the Ecological Condition of Soil Cover Based on Remote Sensing Data: Erosional
Aspect. SHS Web of Conferences, 100, 05014.
https://doi.org/10.1051/shsconf/202110005014
Adewumi, R., Agbasi, O., & Mayowa, A. (2023). Investigating groundwater potential in
northeastern basement complexes: A Pulka case study using geospatial and geoelectrical techniques. HydroResearch, 6, 73–88.
https://doi.org/10.1016/j.hydres.2023.02.003
Ahmad, N. S. B. N., Mustafa, F. B., Yusoff, S. Y. M., & Didams, G. (2020). A systematic
review of soil erosion control practices on the agricultural land in Asia. International
Soil and Water Conservation Research/International Soil and Water Conservation
Research, 8(2), 103–115. https://doi.org/10.1016/j.iswcr.2020.04.001
Akaolisa, C. C., Agbasi, O. E., Etuk, S. E., Adewumi, R., & Okoli, E. A. (2023). Evaluating
the Effects of Real Estate Development in Owerri, Imo State, Nigeria: Emphasizing
Changes in Land Use/Land Cover (LULC). Journal of Landscape Ecology, 16(2), 98–
113. https://doi.org/10.2478/jlecol-2023-0012
Alaboz, P., Dengiz, O., Demir, S., & ?enol, H. (2021). Digital mapping of soil erodibility
factors based on decision tree using geostatistical approaches in terrestrial ecosystem.
Catena, 207, 105634. https://doi.org/10.1016/j.catena.2021.105634
Amah, J. I., Aghamelu, O. P., Omonona, O. V., & Onwe, I. M. (2020). A Study of the
Dynamics of Soil Erosion Using Rusle2 Modelling and Geospatial Tool in EddaAfikpo Mesas, South Eastern Nigeria. Pakistan Journal of Geology, 4(2), 56–71.
https://doi.org/10.2478/pjg-2020-0007
Amah, J. I., Aghamelu, O. P., Omonona, O. V., Onwe, I. M., & Agbi, I. O. (2021). Analysis of
the impacts of hydrology, soil properties, and geotechnics on gully propagation on the
Edda-Afikpo Mesas of the Lower Cross River watershed (southeastern Nigeria).
Journal of African Earth Sciences, 174, 104074.
https://doi.org/10.1016/j.jafrearsci.2020.104074
Ayadiuno, R. U., Ndulue, D. C., Mozie, A., & Ndichie, C. (2021). The Underlying Factors of
Soil Susceptibility to Erosion in Central Parts of Southeastern Nigeria. Al?nteri Zirai
Bilimler Dergisi./Al?nteri Zirai Bilimler Dergisi?:, 36(2), 196–207.
https://doi.org/10.47059/alinteri/v36i2/ajas21134
Azare, I., Abdullahi, Adebayo, A., Dantata, I., & Duala, T. (2020). Deforestation, desert
encroachment, climate change and agricultural production in the Sudano-Sahelian
Region of Nigeria. Journal of Applied Science & Environmental Management, 24(1),
127. https://doi.org/10.4314/jasem.v24i1.18
Guo, L., Yang, Y., Zhao, Y., Li, Y., Sui, Y., Tang, C., Jin, J., & Liu, X. (2021). Reducing
topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a
glacial till. Land Degradation & Development, 32(9), 2849–2860.
https://doi.org/10.1002/ldr.3868
Luo, T., Liu, W., Xia, D., Xia, L., Guo, T., Ma, Y., Xu, W., & Hu, Y. (2022). Effects of land
use types on soil erodibility in a small karst watershed in western Hubei. PeerJ, 10,
e14423. https://doi.org/10.7717/peerj.14423
Nebeokike, U. C., Igwe, O., Egbueri, J. C., & Ifediegwu, S. I. (2020). Erodibility characteristics
and slope stability analysis of geological units prone to erosion in Udi area, southeast
Nigeria. Modeling Earth Systems and Environment, 6(2), 1061–1074.
https://doi.org/10.1007/s40808-020-00741-w
Okoli, E., Akaolisa, C. C. Z., Ubechu, B. O., Agbasi, O. E., & Szafarczyk, A. (2024). Using
VES and GIS-Based DRASTIC Analysis to Evaluate Groundwater Aquifer
Contamination Vulnerability in Owerri, Southeastern Nigeria. Ecological Questions,
35(3), 1–27. https://doi.org/10.12775/eq.2024.031
Rehm, R., Zeyer, T., Schmidt, A., & Fiener, P. (2021). Soil erosion as transport pathway of
microplastic from agriculture soils to aquatic ecosystems. Science of the Total
Environment, 795, 148774. https://doi.org/10.1016/j.scitotenv.2021.148774
Riza, S., Sekine, M., Kanno, A., Yamamoto, K., Imai, T., & Higuchi, T. (2021). Modeling soil
landscapes and soil textures using hyperscale terrain attributes. Geoderma, 402,
115177. https://doi.org/10.1016/j.geoderma.2021.115177
Rosskopf, C. M., Di Iorio, E., Circelli, L., Colombo, C., & Aucelli, P. P. (2020). Assessing
spatial variability and erosion susceptibility of soils in hilly agricultural areas in Southern Italy. International Soil and Water Conservation Research/International Soil
and Water Conservation Research, 8(4), 354–362.
https://doi.org/10.1016/j.iswcr.2020.09.005
Seabloom, E. W., Adler, P. B., Alberti, J., Biederman, L., Buckley, Y. M., Cadotte, M. W.,
Collins, S. L., Dee, L., Fay, P. A., Firn, J., Hagenah, N., Harpole, W. S., Hautier, Y.,
Hector, A., Hobbie, S. E., Isbell, F., Knops, J. M. H., Komatsu, K. J., Laungani, R., . .
. Borer, E. T. (2021). Increasing effects of chronic nutrient enrichment on plant
diversity loss and ecosystem productivity over time. Ecology, 102(2).
https://doi.org/10.1002/ecy.3218
Songu, G., Abu, R., Temwa, N., Yiye, S., Wahab, S., & Mohammed, B. (2021). Analysis of
Soil Erodibility Factor for Hydrologic Processes in Kereke Watershed, North Central
Nigeria. Journal of Applied Science and Environmental Management, 25(3), 425–432.
https://doi.org/10.4314/jasem.v25i3.18
Touma, B. R., Kondolf, G. M., & Walls, S. (2020). Impacts of sediment derived from erosion
of partially-constructed road on aquatic organisms in a tropical river: The Río San Juan,
Nicaragua and Costa Rica. PloS One, 15(11), e0242356.
https://doi.org/10.1371/journal.pone.0242356
Ukabiala, M. E., Kolo, J., Obalum, S. E., Amhakhian, S. O., Igwe, C. A., & Hermensah, N.
(2021). Physicochemical properties as related to mineralogical composition of
floodplain soils in humid tropical environment and the pedological significance.
Environmental Monitoring and Assessment, 193(9). https://doi.org/10.1007/s10661-
021-09329-y
Wang, J., Lautz, L. S., Nolte, T. M., Posthuma, L., Koopman, K. R., Leuven, R. S., & Hendriks,
A. J. (2021). Towards a systematic method for assessing the impact of chemical
pollution on ecosystem services of water systems. Journal of Environmental
Management, 281, 111873. https://doi.org/10.1016/j.jenvman.2020.111873
Wynants, M., Patrick, A., Munishi, L., Mtei, K., Bodé, S., Taylor, A., Millward, G., Roberts,
N., Gilvear, D., Ndakidemi, P., Boeckx, P., & Blake, W. H. (2021). Soil erosion and
sediment transport in Tanzania: Part II – sedimentological evidence of phased land
degradation. Earth Surface Processes and Landforms, 46(15), 3112–3126.
https://doi.org/10.1002/esp.5218
Yang, M., Yang, Q., Zhang, K., Li, Y., Wang, C., & Pang, G. (2021). Effects of Content of Soil
Rock Fragments on Calculating of Soil Erodibility. https://doi.org/10.5194/egusphereegu21-1976
Yu, S., Ren, X., Zhang, J., Wang, H., & Zhang, Z. (2020). Sensibility Analysis of the Hydraulic
Conductivity Anisotropy on Seepage and Stability of Sandy and Clayey Slope. Water,
12(1), 277. https://doi.org/10.3390/w12010277
Zweifel, L., Samarin, M., Meusburger, K., & Alewell, C. (2021). Investigating Causal Factors
of Shallow Landslides in Grassland Regions of Switzerland.
https://doi.org/10.5194/nhess-2021-198


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo