INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )
E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 10 NO. 7 2024
DOI: 10.56201/ijgem.v10.no7.2024.pg56.84
Maimunatu Halilu , Ahmed Isah Haruna , Vandi Dlama Kamaunji , Hamid Reza Gayyemi , Faisal Abdullahi , Idris Ismail Kariya , Hamza Yelwa Mohammed , Hafizullah Abba Ahmed , Adamu Mukhtar Hassa
Despite being widespread in the basement complex of eastern Nigeria, migmatites remain the least studied rocks in the region, leading to a limited understanding of their geochemical affinity and tectonic evolution. This study focuses on migmatites from the Liman Katagum area in Bauchi State, northeastern Nigeria, aiming to determine their petrogenesis (magma source and evolutionary process) and tectonic evolution. These migmatites are classified into six diatexite groups: metatexite, melanocratic, mesocratic, anatectic, leucocratic, and restite. As typical of migmatites, they exhibit a wide range of SiO2 (56.31–75.54 wt.%) and Fe2O3T (2.04 to 21.3 wt.%), moderate to high Al2O3 (12.12–14.8 wt.%), and low MnO (0.03–0.38 wt.%), CaO (0.10–0.45 wt.%), and P2O5 (0.01–0.06 wt.%), as well as low to moderate TiO2 (0.45–1.86 wt.%), MgO (0.01–2.05 wt.%), Na2O (0.32–2.67 wt.%), and K2O (1.3–2.95 wt.%). These characteristics indicate that they are strongly peraluminous (A/CNK > 1.1) supracrustal (S-type) rocks, with a wide geochemical composition ranging from gabbroic diorite to diorite, granodiorite, and granite, showing medium- to high-K calc-alkaline characteristics. Furthermore, they range from calcic to calc-alkalic to alkali-calcic and alkali compositions, suggesting magma derivation from a metasedimentary protolith in the lower crust at high temperatures (850–1414°C). The migmatites exhibit broad ranges of Rb (5.5–86 ppm), Sr (270–6230 ppm), and Ba (100–8400 ppm), displaying fractionation trends involving plagioclase, K-feldspars, and biotite, consistent with the whole rock compositions. These migmatites were emplaced in syn- to post-collision or post-orogenic plate tectonic settings during the Late Proterozoic Pan-African thermo-tectonic granitization and metamorphic events in Eastern Nigeria, forming the present-day widely compositional migmatites of Liman Katagum.
migmatites; Liman Katagum; geochemistry; petrogenesis; tectonic implication
Ahmad, T. G., Haruna, A. I., Abdullahi, F., & Ma?kore, F. I. (2022). Petrography and Geochemical
Characterization of the Neoproterozoic Migmatites Around Mararraban Liman Katagum,
Bauchi Nigeria. International Journal of Earth Sciences Knowledge and Applications, 4(2),
271-293.
Ajakayie, D.E., Hall, D.H., Ashiekaa, J.A., Udensi, E.E., 1991. Magnetic anomalies in the Nigerian
continental mass based on aeromagnetic surveys. Tectonophysics 192, 211–230.
Ajibade, A. C., & Wright, J. B. (1989). The Togo-Benin-Nigeria Shield: evidence of crustal
aggregation in the Pan-African belt. Tectonophysics, 165(1-4), 125-129.
Ananaba, S.E., Ajakaye, D.E., 1987. Evidence of tectonic control of mineralization in Nigeria from
lineament density analysis. A Landsat study. International Journal of Remote Sensing 8(10),
1445–1452.
Black, R., Caby, R., Moussine-Pouchkine, A., Bayer, R., Bertrand, J. M., Boullier, A. M., ... &
Lesquer, A. (1979). Evidence for late Precambrian plate tectonics in West Africa. Nature,
278(5701), 223-227.
Black, R., & Liégeois, J. P. (1993). Cratons, mobile belts, alkaline rocks and continental
lithospheric mantle: the Pan-African testimony. Journal of the Geological Society, 150(1),
89-98.
Brown, C. R., Yakymchuk, C., Brown, M., Fanning, C. M., Korhonen, F. J., Piccoli, P. M., &
Siddoway, C. S. (2016). From source to sink: Petrogenesis of Cretaceous anatectic granites
from the Fosdick migmatite?granite complex, West Antarctica. Journal of Petrology, 57,
1241–1278.
Boher, M., Abouchami, W., Michard, A., Albarede, F., & Arndt, N. T. (1992). Crustal growth in
west Africa at 2.1 Ga. Journal of Geophysical Research: Solid Earth, 97(B1), 345-369.
Burke, K.C., Dewey, F.J., 1972. Orogeny in Africa. In: Dessauvagie, T.F.J. and Whiteman, A.J.,
Ed., African Geology, Ibadan University Press, Ibadan, 583-608.
Bucher, K. (2023). Petrogenesis of metamorphic rocks. Springer Nature Switzerland AG, 466 p.
Caby, R., Bertrand, J. M. L., & Black, R. (1981). Pan-African ocean closure and continental
collision in the Hoggar-Iforas segment, central Sahara. In Developments in precambrian
geology (Vol. 4, pp. 407-434). Elsevier.
Chen, Y.?X., Zheng, Y.?F., & Hu, Z. (2013). Petrological and zircon evidence for anatexis of UHP
quartzite during continental collision in the Sulu orogen. Journal of Metamorphic Geology,
31, 389–413.
Chen, K., Tang, M., Hu, Z., & Liu, Y. (2023). Generation of tholeiitic and calc-alkaline arc magmas
and its implications for continental growth. Geochimica et Cosmochimica Acta, 355, 173-
Dada, S.S., 2006. Crust forming ages and Proterozoic crustal evolution in Nigeria, a reappraisal of
current interpretations. Precambrian Research 87, 65-74.
Dada, S. S. (2008). Proterozoic evolution of the Nigeria–Boborema province. Geological Society,
London, Special Publications, 294(1), 121-136.
Dickina, A. P., Halliday, A. N., & Bowden, P. (1991). A Pb, Sr and Nd isotope study of the basement
and Mesozoic ring complexes of the Jos Plateau, Nigeria. Chemical Geology: Isotope
Geoscience section, 94(1), 23-32.
Dusel–Bacon, C., Hansen, V. L., & Scala, J. A. (1995). High?pressure amphibolite facies dynamic
metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east?
central Alaska. Journal of Metamorphic Geology, 13(1), 9-24.
Evans, K. A., & Tomkins, A. G. (2021). Redox variables and mechanisms in subduction
magmatism and volcanism. Magma redox geochemistry, 63-91.
Ferré, E., Déléris, J., Bouchez, J. L., Lar, A. U., & Peucat, J. J. (1996). The Pan-African reactivation
of Eburnean and Archaean provinces in Nigeria: structural and isotopic data. Journal of the
Geological Society, 153(5), 719-728.
Ferré, E. C., & Caby, R. (2007). Granulite facies metamorphism and charnockite plutonism:
examples from the Neoproterozoic Belt of northern Nigeria. Proceedings of the Geologists'
Association, 118(1), 47-54.
Ferré, E., Gleizes, G., & Caby, R. (2002). Obliquely convergent tectonics and granite emplacement
in the Trans-Saharan belt of Eastern Nigeria: a synthesis. Precambrian research, 114(3-4),
199-219.
Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A
geochemical classification for granitic rocks. Journal of petrology, 42(11), 2033-2048.
Grant, N. K. (1971). A compilation of radiometric ages from Nigeria. Journal of Mining and
Geology, 6, 37-54.
Grant, N.K., 1978. Structural distinction between a metasedimentary cover and a underlying
basement in the 600 m.y. old Pan-African domain of northwestern Nigeria, West Africa.
Geological Society of America Bulletin 89, 50–58.
Middlemost, E. A. (1994). Naming materials in the magma/igneous rock system. Earth-science
reviews, 37(3-4), 215-224.
Obaje, N. G. (2009). The basement complex. Geology and Mineral Resources of Nigeria, 13-30.
O’connor, J. T. (1965). A classification for quartz-rich igneous rocks based on feldspar ratios. US
geological survey professional paper B, 525, 79-84.
Odiana, S., & Ibrahim, A. (2015). An Assessment of the evidence of Climate change in Bauchi,
Nigeria. Journal of Applied Sciences and Environmental Management, 19(3), 375-381.
Ogezi, A. E. O. (1977). Geochemistry and geochronology of basement rocks from northwestern
Nigeria (Doctoral dissertation, University of Leeds (Department of Earth Sciences)).
Olayinka, A.I., 1992. Geophysical siting of boreholes in crystalline basement areas of Africa.
Journal of African Earth Science 14, 197-207.
Oyawale, A.A., & Ocan, O.O. (2020). Migmatization process and the nature of transition from
amphibolite to granulite facies metamorphism in Ikare area south western Nigeria. Journal
of Geology and Mining Research, 12(2), 45-64.
Patiño Douce, A. E. (1999). What do experiments tell us about the relative contributions of crust
and mantle to the origin of granitic magmas?. Geological Society, London, Special
Publications, 168(1), 55-75.
Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from
the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58, 63-
Rahaman, M. A., & Lancelot, J. R. (1980). Continental crust evolution in SW Nigeria: constraints
from U/Pb dating of pre-Pan-African gneisses. Rapport d’activite, 1984, 41-50.
Rahaman, M.A., Ocan, O., 1978. On Relationship in the Precambrian Migmatite-Gneiss of Nigeria.
Journal of Mining and Geology 15, 23-30.
Saggerson, E. P., & Turner, L. M. (1980). Distribution of regional metamorphism in Africa.
Geologische Rundschau, 69, 745-756.
Salisu, S. M., Haruna, A. I., Halilu, M., Abdullahi, F., & Ahmad, T. G. (2022). Morphological
Studies and Petrogenetic Relationship of Metatexite Cum Diatexite Migmatites Around
Buzaye Area, Bauchi, Nigeria. International Journal of Earth Sciences Knowledge and
Applications, 4(3), 380-394.
Sawyer, E. W. (2008). Atlas of Migmatites. The Canadian Mineralogist Special Publication, 9, 1–
Sawyer, E. W., & Brown, M. (2008). Working with migmatites. Mineralogical Association of
Canada Short Course, 38, 1–158.
Sawyer, E. W. (2010). Migmatites formed by water?fluxed partial melting of a leucogranodiorite
protolith: Microstructures in the residual rocks and source of the fluid. Lithos, 116, 273–
Sederholm, J. (1926). On migmatites and associated rocks in Southern Finland II. Bull. Comm.
Géol. Finlande. 77: 89.
Shand, S.J. (1943). The Eruptive Rocks; 2nd edn, John Wiley, New York, 444p.
Sola, A. M., Becchio, R. A., & Pimentel, M. M. (2013). Petrogenesis of migmatites and
leucogranites from Sierra de Molinos, Salta, Northwest Argentina: A petrologic and
geochemical study. Lithos, 177, 470-491.
Tubosun, I. A., & Lancelot, J. R. (1983). Pan African U-Pb ages from basement complex of Nigeria.
XIIe Coll Afr Geol (Tervuren) p, 98.
Villaseca, C., Barbero, L., & Roger