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Abstract 

Recent years have seen tremendous progress in the field of artificial intelligence, which has 

sparked the creation of cutting-edge tools like OpenAI ChatGPT. The OpenAI GPT -3 family of 

big language models serves as the foundation for ChatGPT, which is enhanced through the use of 

supervised and reinforcement learning methodologies. Its goal is to produce text that can't be 

distinguished from human-written information. It can hold conversations with users in a way that 

is surprisingly clear-cut and uncomplicated. Reinforcement Learning from Human Feedback 

(RLHF) is the technique employed. Human input and machine learning methods (Supervised 

Learning) are used to train the model. It is employed in the training phases to reduce biased, 

damaging, and false outputs. The resulting InstructGPT models are much better at following 

instructions than GPT-3. Above all, customized ChatGPT web application that can fine-tune a 

given input and generate text that is of high quality, harmless, truthful and appropriate, without 

biased outputs. A key motivation for our work is to increase helpfulness and truthfulness output 

while mitigating the harms and biases of language models. In conclusion, our results show that 

reinforcement learning from human feedback (RLHF) techniques is effective at significantly 

improving the alignment of general-purpose AI systems with human intentions.  
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Introduction 

According to Lee and Shirani (2004), Web development has evolved significantly over the years, 

with HTML, CSS, and JavaScript being the core technologies for building interactive and engaging 

user interfaces. In an era where digital communication and online interactions have become 

integral to both businesses and individuals, there is a growing need for a tailored and highly 

responsive conversational AI solution (Edet & Ansa, 2023). Recent major progress in the field of 

artificial intelligence has resulted in the creation of cutting-edge technologies like OpenAI 

ChatGPT (Roumeliotis and Tselikas, 2023). The ChatGPT language model is state-of-the-art 
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technology that has the power to drastically alter the Web development industry. As the integration 

of ChatGPT in Web development follows principles of performance, reliability and quality. 

ChatGPT is the most advanced chatbot that has ever been developed. A chatbot is a piece of 

software with artificial intelligence that can carry on human-like dialogue. Users can ask questions 

or make requests, and the system responds within seconds (Rudolph et al., 2023).  

ChatGPT is built on top of OpenAI's GPT -3 family of large language models and is fine-tuned 

with both supervised and reinforcement learning techniques. Unlike search engines (such as 

Google, Bing or Baidu), ChatGPT does not crawl the web for information on current events, and 

its knowledge is restricted to things it learned before 2021. As a consequence, its uneven factual 

accuracy was identified as a significant drawback (Vincent, 2022a). OpenAI's Generative 

Pretrained Transformer (GPT) language model was modified to create the state-of-the-art language 

model ChatGPT. Its goal is to produce text that can't be distinguished from human-written 

information. It has the ability to have discussions with users in a way that is surprisingly clear and 

simple (Mhlanga, 2023).  With the increase in the dependency on the Web-based systems and 

applications, the importance of their performance, reliability and quality have become very 

significant. This study explores building frontend technologies (HTML, CSS, and JavaScript) with 

backend technologies (Node.js, Express) with OpenAI API integration to create a robust web 

application. The frontend refers to the user interface that the user interacts with. The frontend was 

simply responsible for the visual aspects of a website, such as its layout, color scheme, and font 

choices (Ekong et al., 2023). One of the primary responsibilities of the frontend is to retrieve data 

from the backend through an application programming interface (API) (Ekong et al., 2022). 

Finally, the frontend plays a crucial role in how users interact with and navigate a website or 

application. It combines design skills and programming knowledge to create a dynamic and user-

friendly experience (Le, 2020).  Backend refers to everything data related. This is where logical 

operations occur and is responsible for security, what kind of data and logic goes to the front-end. 

The backend provides some API which comprehends one another. In all, the backend houses the 

business logic, handles security concerns, and maintains a connection to the database. (Vickler, 

2021). An API (Application Programming Interface) is a set of rules, protocols, and tools that 

allows different software and web applications to communicate with each other (IBM, 2023). The 

API facilitates the integration of OpenAI's advanced AI capabilities into an array of applications, 

products, and services. GPT-3 and GPT-3.5 are a series of language models developed by OpenAI 

for generating human-like natural language text. These models GPT-3 series models consist of 

davinci and text-davinci-001 while GPT-3.5 series models consist of code-davinci-002, text-

davinci-002, text-davinci-003, and gpt-3.5-turbo. OpenAI then used supervised fine-tuning to 

create text-davinci-002 and introduced the Reinforcement Learning from Human Feedback 

(RLHF) training strategy to create text-davinci-003, which improved its ability to understand 

instructions and generate text. (Christiano et al., 2017; Stiennon et al., 2020). 

 

Methods 

The method used is Reinforcement Learning from Human Feedback (RLHF). The model is trained 

using a combination of machine learning techniques (Supervised Learning) and human input. It 

used the training steps to minimize harmful, untruthful, and unbiased outputs. 
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Model formation 

Fine-tuning ChatGPT with Reinforcement Learning from Human Feedback (RLHF) consisted of 

three distinct steps: 

 

Step 1: Collect demonstration data and train a supervised policy 

 A pre-trained language model is fine-tuned on a relatively small amount of demonstration data 

curated by labelers, to learn a supervised policy (the Super Fine-Tuning model) that generates 

outputs from a selected list of prompts. This represents the baseline model. 

Having collected a dataset S of (x, y0, y1, y2, y3,…, yn) tuples,  

 

Step 2: Collect comparisons data and train a reward model 

Labelers are asked to vote on a relatively large number of the supervised fine-tuning (SFT) model 

outputs, this way creating a new dataset consisting of comparison data. A new model is trained on 

this dataset. This is referred to as the reward model (RM). 

We train this model to predict which summary y ∈ {y0, y1} is better as judged by a human, given 

a post x. If the summary preferred by the human is yi, we can write the RM loss as: 

 
where rθ (x, y) is the scalar output of the reward model for post x and summary y with parameters 

θ, and D is the dataset of human judgments. At the end of training, we normalize the reward model 

outputs such that the reference summaries from our dataset achieve a mean score of 0. 

 

Step 3: Optimize a policy against the reward model using the Proximal Policy Optimization 

(PPO) reinforcement learning algorithm 

The reward model is used to further fine-tune and improve the SFT model. The outcome of this 

step is the so-called policy model. We want to use the reward model trained above to train a policy 

that generates higher-quality outputs as judged by humans.  We include a term in the reward that 

penalizes the KL divergence between the learned RL policy π RL φ with parameters φ and this 

original supervised model π SFT (Schulman et al., 2017). The full reward R can be written as:  

 

 (2) 

https://www.baeldung.com/cs/ml-policy-reinforcement-learning?ref=assemblyai.com
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Figure 1: A diagram illustrating the three steps of our method: (1) Collect demonstration data 

and train a supervised policy (2) Collect comparisons data and train a reward model, and (3) 

Optimize a policy against the reward model (Ouyang et al.,2022). 

  

The resulting InstructGPT models are superior in quality at following instructions than GPT-3.  

We first assess how well outputs from InstructGPT follow user instructions, by having labelers 

equate its outputs to those from GPT-3. We find that InstructGPT models are substantially choose 

on prompts submitted to both the InstructGPT and GPT-3 models on the API. 

 

Software and Development Environment 

Creating ChatGPT web application with GPT model typically involves integrating OpenAI's API 

or GPT-3.5 model into our project. We will be looking at the development tools used, the 

programming languages used and techniques. The development environment has a number of 

elements which include: Visual Studio Code and Visual Studio Code Extensions. 

Node Package Manager (NPM): Packages that were used are CORS, Vite: Vue.js and React, 

Dotenv, Express: (Express.js,), Nodemon: (Node.js). It supports a wide range of programming 

languages, including JavaScript, Typescript, CSS, HTML, JSON, and more. The version control 

system used in this project is Github which is a cloud based version control system. The operating 

system utilized is Windows 10 Home, which is well adapted for web development. 

The frontend of the application was deployed on Netlify (https://www.netlify.com) while the 

backend was deployed on Render (https://render.com.) 

 

Results  

The results of the research are in two folds. Firstly, configuring frontend technologies (HTML, 

CSS, and JavaScript) using client side on Netlify and backend technologies (Node.js, Express) 

https://www.netlify.com/
https://render.com/
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using server side on Render with OpenAI API integration to create a robust web application. 

Secondly, the resulting InstructGPT models are superior in quality at following instructions than 

GPT-3.  Above all, customized ChatGPT web application that can fine-tune a given input and 

generate text that is of high quality, harmless, truthful and appropriate, without biased outputs. 

See figure 2. 

 

 

Figure 2: Customized ChatGPT web application that can fine-tuned a given input and generate 

output. 

 

Discussion 

So these training strategies to predict the next word (or a masked word) in a text sequence may not 

necessarily be learning some higher-level representations of its meaning, these training procedures 

cause the language model to become misaligned for some more difficult tasks. Based on the 

original GPT-3 model, ChatGPT has been further trained with the aim of minimizing the model's 

misalignment difficulties through the use of Reinforcement Learning guided by human feedback. 

But how can we tackle the alignment problem using Reinforcement Learning based on human 

feedback? In particular, we adjust or fine-tune GPT-3 to adhere to a wide range of procedure 

(Christiano et al., 2017; Stiennon et al., 2020).  We first collect a dataset of human-written 

demonstrations on prompts submitted to our API, and use this to train our supervised learning 

baselines. Next, we collect a dataset of human-labeled comparisons between two model outputs 

on a larger set of API prompts. We then train a reward model (RM) on this dataset to predict which 

output our labelers would prefer.  Finally, we use this RM as a reward function and fine-tune our 

GPT-3 policy to maximize this reward using the PPO algorithm (Schulman et al., 2017). The 

resulting InstructGPT models are superior in quality at following instructions than GPT-3.  It is 

important to know that safety and alignment problems we are aiming to solve are complex and 

subjective, and are not fully captured by simple automatic metrics. A key motivation for our work 
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is to increase helpfulness and truthfulness while mitigating the harms and biases of language 

models. To measure the quality of our models, we primarily use a suite of existing metrics on 

publicly available datasets as shown figure 3. 

 

 
Figure 3: Evaluating the datasets (Source: https://openai.com/research/instruction-following) 

 

Assessing the suitability, toxicity and veracity of InstructGPT. Higher ratings are better for 

TruthfulQA and appropriateness, and lower levels are better for toxicity and hallucinations.   

Finally, the resulting InstructGPT models are ultimately significantly more adept in following 

instructions than GPT-3. They also demonstrate marginal reductions in the development of 

harmful products and fewer fabrications of facts.  

 Conclusion 

The research findings reveal the profound impact of reinforcement learning from human feedback 

(RLHF) on enhancing the alignment of general-purpose AI systems with human intentions. By 

integrating human preferences into the training process, RLHF methodologies, as demonstrated 

through the development of InstructGPT models, offer a promising approach to refining AI-

generated text. This human-centric alignment represents a paradigm shift in AI development, 

prioritizing the harmonization of machine behavior with human values, preferences, and 

expectations. As a result, AI systems trained using RLHF exhibit a heightened ability to generate 

text that resonates with users on a deeper level, fostering a more intuitive and satisfying interaction 

experience. A key outcome of applying RLHF techniques is the substantial enhancement in the 

quality of generated text. Through iterative adjustments guided by human feedback, InstructGPT 

models refine their language generation capabilities, producing outputs characterized by improved 

coherence, relevance, and linguistic accuracy. This quality enhancement translates into tangible 

benefits for users, including a more natural and engaging conversational experience, as well as 

increased utility and applicability of AI-generated content across various domains and 

applications. Furthermore, RLHF plays a pivotal role in ensuring the safety, trustworthiness, and 

ethical integrity of AI-generated text. By leveraging human preferences and judgments, 

InstructGPT models are trained to prioritize safety considerations, minimizing the risk of 

producing harmful or inappropriate content. This proactive approach to safety mitigation instills 

confidence among users and stakeholders, mitigating concerns surrounding the potential negative 

https://openai.com/research/instruction-following
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consequences associated with AI-generated text, such as misinformation, harmful stereotypes, or 

offensive language. Additionally, RLHF methodologies contribute to the promotion of 

truthfulness, accuracy, and unbiased mitigation in AI-generated text. By learning from human-

labeled comparisons and preferences, InstructGPT models refine their understanding of what 

constitutes truthful and reliable information, thereby producing outputs aligned with factual 

accuracy. Moreover, RLHF actively addresses the challenge of bias in AI systems by identifying 

and rectifying biases present in training data and model outputs, fostering fairness, inclusivity, and 

neutrality in language generation. This holistic approach to text generation represents a significant 

step forward in advancing the responsible and ethical development of AI technologies. 
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