WORLD JOURNAL OF INNOVATION AND MODERN TECHNOLOGY (WJIMT )
E-ISSN 2504-4766
P-ISSN 2682-5910
VOL. 9 NO. 5 2025
DOI: 10.56201/wjimt.v9.no5.2025.pg166.197
Udemba, Chinenye Margaret and Ezeh, Ernest Mbamalu
This study focused on the production of biodiesel from castor seed oil using Afzelia Africana seed husk ash (AASHA) as a heterogeneous catalyst. The physicochemical properties of the castor seed oil and the catalyst were characterized. The effects of process variables such as methanol/oil molar ratio, catalyst concentration, reaction temperature, reaction time, and agitation speed on the biodiesel yield were investigated. Response surface methodology (RSM) was employed to optimize the production process. The optimal conditions were found to be: methanol/oil molar ratio of 10.4:1, catalyst concentration of 2.19 wt%, reaction temperature of 63°C, reaction time of 1.5 hours, and agitation speed of 394 rpm, which resulted in a biodiesel yield of 90.9%. The properties of the produced biodiesel, such as density, viscosity, flash point, cetane number, and acid value, were within the American Society for Testing and Materials (ASTM) standards for biodiesel. Gas chromatography-mass spectrometer (GC-MS) analysis confirmed the conversion of the fatty acids in the castor seed oil to their corresponding methyl esters. The Fourier Transform Infrared Spectroscopy (FTIR) analysis further supported the successful transesterification of the oil. The study demonstrates the feasibility of using AASHA as an effective and eco-friendly catalyst for the production of high-quality biodiesel from castor seed oil.
Castor seed oil; Afzelia Africana; Heterogeneous catalyst; Transesterification;
Adebayo G.B., Ameen O.M. & Abass L.T. (2011). Physico-chemical properties of biodiesel
produced from Jatropha Curcas oil and fossil diesel. Journal of Microbiology and
Biotechnology Research, 1 (1), 12-16.
Ani I.J., Akpan U.G., Ezeh E.M., & Egbosiuba T C. (2024). Sorption – New Perspectives and
Applications. - The Impact of Green Technology on Sorption Processes.
Atadashi, I.M., Aroua, M.K. & Aziz, A.A. (2010) High-quality biodiesel and its diesel engine
application, a review. Renewable and Sustainable Energy Review, 14, 1999-2008.
Atadashi, I.M., Aroua, M. K., Abdul Aziz, R. & Sulaiman, N. M. N. (2012) The effects of
catalysts in biodiesel production: A review. Renewable and Sustainable Energy
Reviews, 16(5), 3456-3470.
Betiku, E., Okeleye, A. A., Ishola, N. B., Osunleke, A. S., Ojumu, T. V. (2019). Development
of a Novel Mesoporous Biocatalyst Derived from Kola Nut Pod Husk for Conversion
of Kariya Seed Oil to Methyl Esters: A Case of Synthesis, Modeling and Optimization
Studies, Catal. Letters. 149, 1772–1787. doi:10.1007/s10562-019-02788-6. 2607.
Bohlouli, A., Mahdavian, L. (2019). Catalysts used in biodiesel production: a review
Catalysts
used
in
biodiesel
production:
a
review.
Biofuels,
1–14.
doi:10.1080/17597269.2018.1558836.
Changmai, B., Laskar, I. B., Rokhum, L. (2019). Microwave-assisted synthesis of glycerol
carbonate by the transesterification of glycerol with dimethyl carbonate using Musa
acuminata peel ash catalyst, J. Taiwan Inst. Chem. Eng. 102, 276–282.
doi:
10.1016/j.jtice.2019.06.014.
Chatterjee, S., Dhanurdhar, Rokhum, L. (2017). Extraction of a cardanol-based liquid bio-
fuel from waste natural resource and decarboxylation using a silver-based catalyst,
Renew. Sustain. Energy Rev. 72, 560–564. doi: 10.1016/j.rser.2017.01.035.
Cheng, J., Qiu, Y., Huang, R., Yang, W., Zhou, J., Cen, K. (2016). Biodiesel production from
wet microalgae by using graphene oxide as a solid acid catalyst, Bioresour. Technol.
221, 344–349. doi: 10.1016/j.biortech.2016.09.064.
Dalvand, P., Mahdavian, L (2018). Calculation of the properties of biodiesel produced from
castor
seed
byeg
gshell
catalyst.
Biofuels.
9,705–710.
doi:10.1080/17597269.2017.1302668.
Da Silva César, A., Conejero, M. A., Barros Ribeiro, E. C., Batalha, M. O. (2019).
Competitiveness analysis of “social soybeans” in biodiesel production in Brazil,
Renew. Energy. (2019) 1147–1157. doi: 10.1016/j.renene.2018.08.108.
De Oliveira, F. C., Coelho, S. T. (2017). History, evolution, and environmental impact of
biodiesel in Brazil: A review, Renew. Sustain. Energy Rev. 75, 168–179.doi:
10.1016/j.rser.2016.10.060.
Delzeit, R. (2019). Using Used Cooking Oil (UCO) for biofuel production: Effects on
global land use and interlinkages with food and feed production., (2019).
Esonye, C., Onukwuli, O. D., Ofoefule, A. U. (2019). Optimization of production from
prunus
amygdalus seed oil using response surface methodology and artificial neural
networks,
Renewable
Energy
130
(2019)
62–71,
https://doi.org/10.1016/j.renene.2018.06.036.
Eze, C. N., Onukwuli, O. D., Ude, C. N., Gbasouzor, A. I. (2022). Biodiesel synthesis from
waste canarium schweinfurtii oil (WCSO) catalyzed by thermal reinforced clay and
its
kinetics
evaluation.
Cleaner
Materials,
https://doi.org/10.1016/j.clema.2022.100145.
Ezeh, E. M., Agu, P C.,& Aworabhi E (2024). Biological Treatment Techniques for Sewage:
Aerobic
and Anaerobic Processes: IntechOpen (Sewage- Management and
Treatment Techniques). DOI: http//dx.doi.org/10.5772/intechopen.1006097.
Ezekoye V. Adinde R., Ezkoye D. and Ofomatah A. (2019) Syntheses and characterization of
biodiesel
from
citrus
sinensis
seed
oil.
Scientific
African,
6,
https://doi.org/10.1016/j.sciaf.2019.e00217.
Flach, B., Lieberz, S., Rondon, M., Williams, B., Teiken, C. (2015). GAIN Report: EU-28
Biofuels Annual 2015, (2015) 14–21. http://gain.fas.usda.gov/Recent GAIN 2216
Publications/Biofuels Annual_The Hague_EU-28_7-15-2015.pdf.
Georgogianni, K. G., Katsoulidis, A. P., Pomonis, P. J. & Kontominas, M. G. (2009)
Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts:
Fuel Processing Technology, 90, 671-676.
Gusniah, A., Veny, H., Hamzah, F. (2019). Ultrasonic Assisted Enzymatic Transesterification
for
Biodiesel
Production,
Ind.
Eng.
Chem.
Res.
58,
581–589.
doi:
10.1021/acs.iecr.8b03570.
International Renewable Energy Agency (IRENA), Global Energy Transformation: A
Roadmap
to
2050,
(2018).
doi:Doi
10.1002/(Sici)1097-
0029(19990915)46:6<398::Aid-
Jemt8>3.0.Co;2-H.
Jambulingam, R., Shalma, M., Shankar, V. (2019). Biodiesel production using lipase
immobilised functionalized magnetic nano catalyst from oleaginous fungal lipid, J.
Clean. Prod. 215 (2019) 245–258. doi: 10.1016/j.jclepro.2018.12.146.
Jayaraman, J., Alagu, K., Appavu, P., Joy, N., Jayaram, P., Mariadoss, A. (2020). Enzymatic
production of biodiesel using lipase catalyst and testing of an unmodified
compression ignition engine using its blends with diesel. Renew. Energy. 145, 399–
doi:10.1016/j.renene.2019.06.061.
Kim, K. H., Lee, O. K., Lee, E. Y. (2018). Nano-immobilized biocatalysts for biodiesel
production from renewable and sustainable resources. Catalysts. 8 (2018).
doi:10.3390/catal8020068.
Lathiya, D. R., Bhatt, D. V., Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst
from waste orange peel for cost-effective biodiesel production, Bioresour. Technol.
Reports. 2, 69–76. doi:10.1016/j.biteb.2018.04.007.
Ma, Y., Wang, Q., Sun, X., Wu, C., Gao, Z. (2017). Kinetics studies of biodiesel production
from waste cooking oil using FeCl3-modified resin as a heterogeneous catalyst.
Renew. Energy. 107, 522–530. doi: 10.1016/j.renene.2017.02.007.
Malani, R. S., Umriwad, S. B., Kumar, K., Goyal, A., Moholkar, V. S. (2019). Ultrasound-
assisted enzymatic biodiesel production using a blended feedstock of non–edible oils:
Kinetic
analysis.
Energy
Convers.
Manag.
188,
142–150.
doi:10.1016/j.enconman.2019.03.052.
Moazeni, F., Chen, Y. C., Zhang, G. (2019). Enzymatic transesterification for biodiesel
production from used cooking oil, a review, J. Clean. Prod. 216, 117–128.
doi:10.1016/j.jclepro.2019.01.181.
Moser, B. R. (2009). Biodiesel production, properties and feedstocks. In Vitro Cell
Development Biology-Plant, 45, 229-266.
Onukwuli, O. D. And Ude C. N. (2018). Kinetics of African pear seed oil (APO)
methanolysis catalyzed by phosphoric acid?activated kaolin clay. Applied
Petrochemical
Research, https://doi.org/10.1007/s13203-018-0210-0
Orwa, C., Mutua, A., Kindt, R., Jamnadass R., Anthony. S. (2009). Agroforestry Database: a
tree
reference
and
selection
guide
version
4.0(http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp)
Pathak, G., Das, D., Rajkumari, K., Rokhum, L. (2018). Exploiting waste: Towards a
sustainable production of biodiesel using: Musa acuminata peel ash as a
heterogeneous
catalyst,
Green
Chem.
20,
2365–2373.
doi:10.1039/c8gc00071a.
Sebastian, J., Muraleedharan, C., Santhiagu, A. (2017). Enzyme-catalyzed biodiesel
production from rubber seed oil containing high free fatty acid. Int. J. Green Energy.
14, 687–693. doi:10.1080/15435075.2017.1318754.
Septiani U., RezaAudina P. and Novesar J. (2016) Synthesis of zeolite ZSM-5 from rice husk
ash as catalysts in vegetable oil transesterification for biodiesel production. Der
Pharmacia Lettre, 8 (19), 86 - 91Taher, H., Nashef, E., Anvar, N., Al-Zuhair, S.
(2019). Enzymatic production of biodiesel from waste oil in ionic liquid medium.
Biofuels, 10, 463–472.
doi:10.1080/17597269.2017.1316145.
Talha, N. S., Sulaiman, S. (2016). Overview of catalysts in biodiesel production, ARPN J.
Eng. Appl. Sci