RESEARCH JOURNAL OF PURE SCIENCE AND TECHNOLOGY (RJPST )
E-ISSN 2579-0536
P-ISSN 2695-2696
VOL. 8 NO. 3 2025
DOI: 10.56201/rjpst.vol.8.no3.2025.pg8.19
Toscanini D S and Nelson A
Many studies have shown the damaging effect of moisture on conventional asphalt concrete when submerged in water for a time period under the application of traffic load. This study is aimed at determining the effect of partially replacing the mineral filler portion of the total mix with 2-14% clay, sourced from Mbiama on asphaltic concrete. The Marshall Stability Design Method was used to determine the optimum bitumen content of 5% and to evaluate asphalt concrete properties after soaking durations of 2, 4, and 7 days. The clay used for the study underwent Atterberg Limit Test for classification. The results show that the clay adhered to OL and A-3 in both the USC and AASTHO soil classification systems. The Marshall Stability value for the control sample increased from 8.4 kN to 16.54 kN at 4% clay addition, given a 49% increase in stability over the control sample. Soaked clay modified asphalt concrete samples maintained a significant retained stability across all soaking duration with superior moisture resistance capabilities.
Marshall, Stability, Flow, Mbiama, Clay, Flood, Modified, Asphalt, Concrete
ASTM D 4318-17e1. Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index
of Soils.
ASTM D-1559-89. Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using
Marshall Apparatus. https://www.astm.org/d1559-89.html.
ASTM D2726-21. Standard Test Method for Bulk Specific Gravity and Density of Non-
Absorptive Compacted Asphalt Mixtures.
ASTM D 3515-01. Standard Specification for Hot-Mixed, Hot-Laid Bituminous Paving Mixtures
(Withdrawn 2009).
FMWH (1997). Federal Ministry of Works and Housing (1997) Specifications for Roads and
Bridges
Vol.
II.
Abuja.
https://www.scirp.org/reference/referencepapers?referenceid=2582418.
Muniandy, R., Yunus, R., Salihudin, H & Aburkaba, E.E. (2013). Lamya Influence of Clay
Nanoparticles on the Physical and Rheological Characteristics of Short Term Aged Asphalt
Binder. Australian Journal of Basic and Applied Science 7(11): 488-498.
Tarefder, R. A., & Ahmed, Z. (2014). Characterization of Conventional and Clay-modified Hot
Mix
Asphalt
Mixtures.
Construction
and
Building
Materials,
52,
35-39.
https://doi.org/10.1016/j.conbuildmat.2013.10.079.
Noor, M. S., Ahmad, M. N., Aziz, S. A., Daud, S. A., & Ibrahim, W. A. W. (2017). The Review
on Clay Materials as a Modifier in Asphalt Binder and Mix. Materials Science and
Engineering, 271, 152-158. https://doi.org/10.1088/1757-899X/271/1/012032.
Shenoy, A., Nayak, S., Asukile, A. T., & Vaidya, U. K. (2022). Sustainable Development of
Asphalt Concrete Mixtures using Waste Plastic and Nanoclay. Journal of Cleaner
Production, 337, 130476. https://doi.org/10.1016/j.jclepro.2022.130476.
Sahoo, P. K. & Rout, S. K. (2020). Effect of Calcined Clay on Moisture Sensitivity and Strength
Characteristics of Asphalt Mix. Materials Today: Proceedings, 27, pp.2351-2355.
https://doi.org/10.1016/j.matpr.2020.03.317.
Mallick, R. B., Sengupta, A. & Kandhal, P. S. (2020). Use of Waste Plastic in Hot Mix Asphalt:
A state-of-the-art review. Resources, Conservation and Recycling, 153, article 104502.
https://doi.org/10.1016/j.resconrec.2019.104502.
Pan, Z., Wu, S. & Mohammad, L.N. (2018). Evaluation of Moisture Damage Resistance of
Asphalt Mixtures Containing Recycled Polyethylene. Construction and Building
Materials, 160, pp.1-7. https://doi.org/10.1016/j.conbuildmat.2017.10.154.
Alkofahi, N & Khedaywi, T. (2019). EvaluEffect of Asphalt Film thickness on Stripping
Resistance. International Journal of Applied Engineering Research ISSN 0973-4562
Volume
14,
No.
2,
PP.
560-570.
Research
India
Publications.
http://www.ripublication.com.
Hainin, M R., Ramadhansyah, P J., Awang, H., Khairil Azman, M., Intan Suhana, M R., Nordiana,
M., Norhidayah, A H., Haryati, Y. & Che Ros, I. (2019). Marshall Stability Properties of
Asphaltic Concrete with Kaolin Clay under Aging. IOP Conference Series: Earth and
Environmental Science, 220(), 012040–. doi:10.1088/1755-1315/220/1/012040.
Cheraghian, G. & Wistuba, M. P. (2020). Ultraviolet Aging Study on Bitumen Modified by a
Composite of Clay and Fumed Silica Nanoparticles. Scientific Reports, 10(1), 11216–.
doi:10.1038/s41598-020-68007-0.
Jaacob H, Ali Mughal M, Jaya R P, Hainin M R, Jayanti D S and Che Wan C N. (2016).
Rheological properties of styrene butadiene rubber modified bitumen binder; J.
Teknologi. 78 pp. 121–126.
Kumari, N & Mohan, C. 2021. Basics of Clay Minerals and Their Characteristic Properties.
Intechopen. Doi:10.5772/intechopen.97672
Kleizien?, R., Paliukait?, M., & Vaitkus, A. (2019). Effect of Nano SiO2, TiO 2 and ZnO
modification to rheological properties of neat and
polymer modified bitumen. In International Symposium on Asphalt Pavement and
Environment 325–336.
Cheraghian, G. (2017). Evaluation of Clay and Fumed Silica Nanoparticles on Adsorption of
Surfactant Polymer during Enhanced Oil Recovery.
J. Jpn. Petrol. Inst. 60, 85–94 (2017).
Ahmad, M.F & Farhan, I.H. (2022). Moisture Susceptibility of Organophilic Nano Clay Modified
Asphalt Mixtures. International Journal of Civil Engineering, Volume 9 Issue 9. Pp 13-21.
Doi:10.14445/23488352/IJCE-V9I9P103.
Omar, H.A., Yusoff, N.I., Mubaraki, M & CeyLan, H. 2020. Effects of Moisture Damage on
Asphalt Mixtures. Journal of Traffic and Transportation Engineering (English Edition).
7(5): 600 – 628. Doi: 10.1016/j.tte.2020.07.001.
Ismael, S.A.M & Ismael, M.Q. 2019. Moisture Susceptibility of Asphalt Concrete Pavement
Modified by Nano clay Additive. Civil Engineering Journal. Vol 5, No 12 (2019).
http://dx.doi.org/10.28991/cej-2019-03091431.
Boateng, K.A., Tuffour, Y.A., Agyeman, S & Boadu, F (2022). Potential Improvements in
Montmorillonite – nanoclay – modified Cold Mix Asphalt. Case Studies in Construction
Materials. Elsevier. Doi: 10.1016/j.cscm.2022.e01331.