References
Al Amrani, Y., Lazaar, M., & El Kadiri, K. E. (2018). Random forest and support vector machine based hybrid approach to sentiment analysis. Procedia Computer Science, 127, 511β520. Alamoudi, E. S., & Alghamdi, N. S. (2021). Sentiment classification and aspect-based sentiment analysis on Yelp reviews using deep learning and word embeddings. Journal of Decision Systems, 30(2β3), 259β281. Alqaryouti, O., Siyam, N., Abdel Monem, A., & Shaalan, K. (2024). Aspect-based sentiment analysis using smart government review data. Applied Computing and Informatics, 20(1β 2), 142β161. An, S., Kim, D., & Kim, S. (2018). Recurrent neural network training with dark knowledge transfer. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 4254β4263. Asthana, A. (2022). Hybrid Recommendation System: A Review. International Journal of Computer Applications, 184(32), 1β7. Drolet, M.-J., Rose-Derouin, E., Leblanc, J.-C., Ruest, M., & Williams-Jones, B. (2023). Ethical issues in research: Perceptions of researchers, research ethics board members, and research ethics experts. Journal of Academic Ethics, 21(2), 269β292. Hao, Y., Zhang, Y., & Li, X. (2023). Sentiment recognition and analysis method of official document text based on BERT-SVM model. Journal of Physics: Conference Series, 2318(1), Heguerte, L. B., Bugeau, A., & Lannelongue, L. (2023). How to estimate carbon footprint when training deep learning models? A guide and review. Environmental Research Communications, 5(8), 085001 Javed, A., Rafi, M., & Baig, A. R. (2021). A Survey on Content-Based Filtering Recommender Systems. Journal of Information Science and Engineering, 37(4), 1011β1031. Kulkarni, S., & Rodd, S. F. (2020). Context Aware Recommendation Systems: A review of the state of the art techniques. Computer Science Review, 37, 100255 Kulkarni, S., & Rodd, S. F. (2020). Context Aware Recommendation Systems: A review of the state of the art techniques. Computer Science Review, 37, 100255. Lengkeek, S., van der Lee, C., & Hogenboom, F. (2023). Leveraging hierarchical language models for aspect-based sentiment analysis on financial data. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1234-1245. Li, Z., Zhang, Y., & Chen, L. (2022). Personalized recommendation model of electronic commerce in new media environment. Frontiers in Psychology, 13, 952622. Li, Z., Zhang, Y., & Chen, L. (2022). Personalized recommendation model of electronic commerce in new media environment. Frontiers in Psychology, 13, 952622. Logesh, R., Subramaniyaswamy, V., & Vijayakumar, V. (2019). A Hybrid Personalized Recommender System Using Clustering and Association Rule Mining. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1955β1965. Mutinda, J., Mwangi, W., & Okeyo, G. (2023). Sentiment analysis of text reviews using lexicon- enhanced BERT embedding (LeBERT) model with convolutional neural network. Applied Sciences, 13(3), 1445 Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1 Osman, T., Noah, S. A. M., & Darwich, M. (2019). A Hybrid Recommender System Based on Context Awareness and Sequential Behavior. IEEE Access, 7, 186264β186278. Pagano, T. P., Loureiro, R. B., Lisboa, F. V. N., Peixoto, R. M., GuimarΓ£es, G. A. S., Cruz, G. O. R., Araujo, M. M., Santos, L. L., Cruz, M. A. S., Oliveira, E. L. S., & others. (2023). Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big Data and Cognitive Computing, 7(1), 15. Roy, S., & Dutta, P. (2022). A Hybrid Recommender System Using Collaborative Filtering and Content-Based Filtering for Improved Recommendation. Procedia Computer Science, 198, 85β91. Shakhovska, N., Medykovskyy, M., & Syerov, Y. (2020). Logistic regression for star rating prediction. Advances in Intelligent Systems and Computing, 1080, 697β707. Suresh, A., & MJ, C. M. B. (2020). A Comprehensive Study of Hybrid Recommendation Systems for E-Commerce Applications. International Journal of Advanced Science and Technology, 29(3), 4089β4101. Suresh, A., & MJ, C. M. B. (2020). A Comprehensive Study of Hybrid Recommendation Systems for E-Commerce Applications. International Journal of Advanced Science and Technology, 29(3), 4089β4101. Walek, B., & Fajmon, P. (2023). A Hybrid Recommender System for E-commerce Based on Customer Reviews and Product Features. Applied Sciences, 13(1), 123. Wang, J., Zhang, Y., Yuan, S., & Zeng, D. D. (2020). A Systematic Study on the Recommender Systems in the E-Commerce. IEEE Access, 8, 45459β45470. Wang, J., Zhang, Y., Yuan, S., & Zeng, D. D. (2020). A Systematic Study on the Recommender Systems in the E-Commerce. IEEE Access, 8, 45459β45470.