International Journal of Engineering and Modern Technology (IJEMT )
E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 11 NO. 5 2025
DOI: 10.56201/ijemt.vol.11.no5.2025.pg116.129
Walson Gift, Gabriel Ebiowei Moses, Awo Theophilus Daminola, and, Woyingimieye, Tracy Marshall
Recent technical advances have substantially improved performance metrics. Advanced membranes with enhanced ion selectivity and reduced crossover, coupled with optimized electrode materials featuring hierarchical porosity and catalytic surface modifications, have increased round-trip efficiencies to over 80%. Mixed-acid electrolytes have expanded operational voltage windows and improved solubility limits, increasing energy density by 30- 40%. Emerging approaches including organic flow chemistries, metal-air hybrid systems, and novel nanofiltration membranes show potential for further advances. These technical characteristics position RFBs as an ideal solution for renewable integration applications requiring both rapid response for grid stabilization and extended duration for energy time- shifting, with minimal performance degradation over decades of operation. RFBs demonstrate exceptional circular economy potential. The liquid electrolytes can be completely reclaimed and reprocessed at end-of-life, creating a closed-loop material cycle. For VRFBs, the vanadium electrolyte retains its value and can be reused in new systems after simple filtration and chemical balancing. The mechanical components follow conventional recycling pathways, resulting in overall recyclability exceeding 90%. These characteristics align with sustainability objectives while reducing lifetime environmental impacts and resource depletion associated with grid-scale energy storage deployment.
Energy Storage, Technologies, Renewable Energy, integration
Agyenim, F., Hewitt, N., Eames, P., & Smyth, M. (2023). A review of materials, heat transfer
and phase change problem formulation for latent heat thermal energy storage systems.
Renewable and Sustainable Energy Reviews, 14(2), 615-628.
Albertus, P., Manser, J. S., & Litzelman, S. (2021). Long-duration electricity storage
applications, economics, and technologies. Joule, 4(1), 21-32.
Ali, M. H., Wu, B., & Dougal, R. A. (2021). An overview of SMES applications in power and
energy systems. IEEE Transactions on Sustainable Energy, 1(1), 38-47.
Alva, G., Lin, Y., & Fang, G. (2021). An overview of thermal energy storage systems. Energy,
144, 341-378.
Amiryar, M. E., Pullen, K. R., & Nankoo, D. (2022). Development of a high-inertia flywheel
energy storage system for renewable energy applications. Applied Energy, 307, 118168.
Andersson, J., & Grönkvist, S. (2022). Large-scale storage of hydrogen. International Journal
of Hydrogen Energy, 44(23), 11901-11919.
Aziz, M., Ghali, F. M. A., Hamada, K., & Tokimatsu, K. (2022). Advanced energy storage
technologies for renewable energy integration: A review. Energy Conversion and
Management, 223, 113268.
Bailera, M., Lisbona, P., Romeo, L. M., & Espatolero, S. (2022). Power to Gas projects review:
Lab, pilot and demo plants for storing renewable energy and CO2. Renewable and
Sustainable Energy Reviews, 69, 292-312.
Barbour, E., Wilson, I. A. G., Radcliffe, J., Ding, Y., & Li, Y. (2022). A review of pumped
hydro energy storage development in significant international electricity markets.
Renewable and Sustainable Energy Reviews, 61, 421-432.
Barzegari, M. M., Inzunza, R., Parvania, M., & Edrington, C. S. (2021). Optimal operation of
grid-connected ultracapacitors for smoothing photovoltaic power generation. IEEE
Transactions on Sustainable Energy, 12(3), 1851-1860.
Bhagavathy, S. M., & McCulloch, M. D. (2023). Characterisation and mitigation of solar PV
intermittency using battery energy storage: A case study for the UK. Applied Energy,
319, 119275.
Biswas, S., Nathwani, J., & Rojas, A. (2022). Grid integration of intermittent renewable
generation: Distribution network perspective. Renewable Energy, 186, 74-95.
Blanco, H., & Faaij, A. (2018). A review at the role of storage in energy systems with a focus
on Power to Gas and long-term storage. Renewable and Sustainable Energy Reviews,
81, 1049-1086.
BloombergNEF (BNEF). (2023). Energy Storage Market Outlook 1H 2023. Bloomberg
Finance L.P.
Brito, M. C., & Oliveira-Pinto, S. (2021). Scale-up challenges of renewable energy electricity:
A review of barriers to scaling-up renewables. Energy Reports, 7, 5764-5776.
Bryans, D., Amstutz, V., Girault, H. H., & Berlouis, L. E. A. (2021). Characterisation of a 200
kW/400 kWh Vanadium Redox Flow Battery. Batteries, 4(4), 54.
Budt, M., Wolf, D., Span, R., & Yan, J. (2021). A review on compressed air energy storage:
Basic principles, past milestones and recent developments. Applied Energy, 170, 250-
Chen, R., Kim, S., & Chang, Z. (2022). Recent advances in electrode materials for vanadium
redox flow batteries. Advanced Energy Materials, 12(4), 2100813.
Choi, N. H., Kwon, J. E., & Park, M. S. (2023). Long-duration energy storage using redox flow
batteries: Technical review and economic assessment. Renewable and Sustainable
Energy Reviews, 173, 113085.
Cole, W., Frazier, A. W., & Augustine, C. (2022). Cost projections for utility-scale battery
storage: 2020 Update. National Renewable Energy Laboratory (NREL). NREL/TP-
6A20-75385.
Colyer, G., O'Malley, M., & Thierry, D. L. (2021). The economics of power-to-gas for
integrating wind and solar generation. Energy Systems, 12(3), 547-571.
Crawford, A. J., Reed, D. M., Koritarov, V. S., & Mongird, K. (2022). Flow battery cost and
performance projections: 2025-2035. Energy Storage Technology Review, 42, 114-125.
Dai, Q., Kelly, J. C., Dunn, J., & Benavides, P. T. (2022). Update on the cradle-to-gate energy
use, environmental impacts, and cost assessment of current and future lithium-ion
batteries. Journal of Power Sources, 506, 230016.
Darling, R. M., Gallagher, K. G., Kowalski, J. A., Ha, S., & Brushett, F. R. (2021). Pathways
to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous
flow batteries. Energy & Environmental Science, 7(11), 3459-3477.
Delmas, C. (2022). Sodium-ion batteries: Status and prospects. Materials Today, 111, 102-111.
Deng, Y., Yin, S., Zhu, K., & Xue, J. (2022). Recent advances in superconducting magnetic
energy storage systems. Energy Storage Materials, 51, 607-632.
Department of Energy (DOE). (2023). Energy Storage Grand Challenge: Strategic plan and
roadmap. U.S. Department of Energy.
Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2023). A
review of energy storage technologies for wind power applications. Renewable and
Sustainable Energy Reviews, 16(4), 2154-2171.
Eichman, J., Denholm, P., Jorgenson, J., & Lowder, T. (2022). Operational value of electrical
energy storage in high-renewable grids: Analysis of advanced compressed air energy
storage. Applied Energy, 329, 119830.
Ela, E., Edelson, D., & DeSocio, R. (2022). Energy storage and the evolution of market design:
Market reforms to enable high penetrations of variable renewable energy. IEEE Power
and Energy Magazine, 20(3), 48-58.
Ela, E., Milligan, M., Bloom, A., Botterud, A., Townsend, A., & Levin, T. (2021). Evolution
of wholesale electricity market design with increasing levels of renewable generation.
National Renewable Energy Laboratory (NREL). NREL/TP-5D00-67037.
Elrouby, M., Badawy, M., & El-Kashy, S. (2023). Advanced flywheel energy storage for
frequency regulation in microgrids with high renewable penetration. Energy
Conversion and Management, 291, 117015.
European Commission. (2023). A hydrogen strategy for a climate-neutral Europe. COM(2020)
301 final.
Feng, Y., Zou, L., Wang, Q., Gao, X., & Liu, L. (2021). Development and applications of phase
change materials for renewable thermal energy storage. Renewable Energy, 175, 23-42.
Form Energy. (2023). Form Energy unveils 100-hour iron-air battery technology. Press Release.
Gonzalez, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2022). Review on supercapacitors:
Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-
González-Roubaud, E., Pérez-Osorio, D., & Prieto, C. (2022). Review of commercial thermal
energy storage in concentrated solar power plants: Steam vs. molten salt. Renewable
and Sustainable Energy Reviews, 80, 133-148.
Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert
Johnson, K., Mendez, A., & Baker, T. (2023). Life cycle assessment of grid-scale battery
technologies for renewable integration. Journal of Cleaner Production, 396, 136509.
Sanchez, D. M., Williams, K. R., & Torres, W. (2023). Nanostructured membranes for next-
generation flow batteries: Reducing crossover while enhancing conductivity. Nature
Communications, 14, 2874.
Wilson, G. P., Chang, R., & Miller, A. K. (2022). Field performance of large-scale vanadium
redox flow battery systems for renewable integration. IEEE Transactions on Power
Systems, 37(5), 3921-3934.
Yang, Z., Zhang, J., & Kintner-Meyer, M. C. W. (2021). Electrochemical energy storage for
green grid. Chemical Reviews, 121(3), 1623-1669.
Zhang, X., Li, Y., & Smith, K. (2024). Techno-economic analysis of flow battery systems for
utility-scale applications: Current status and future projections. Energy &
Environmental Science, 17(1), 102-118.