International Journal of Engineering and Modern Technology (IJEMT )
E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 11 NO. 4 2025
DOI: 10.56201/ijemt.vol.11.no4.2025.pg56.69
Usman M.I., Muhammed Isah Muhammed, Shalegh AS, Kachallah A.S., and Galadima, Umar Idris
Fossil fuel energy consumption in the agriculture sector related to the use of machinery has created severe climate change issues, adding significantly to CO2 emissions, economic growth, and food production. The current research has reviewed the most carbon-emitting agriculture factors based on the roadmap under the prediction of technological maturity, Carbon Emissions in Conventional Agriculture, and Fuel Consumption in Agricultural Production. The study objective is to provide a roadmap for decarbonizing the food supply chain and its current framework toward food policy. The different machines and frameworks applied in agricultural farming can mitigate the CO2 emissions of the agriculture sector if renewable energy technologies (RETs) and renewable energy sources are organized with proper agrarian loads. This manuscript highlights potential CO2 reduction resolutions connected to fuel combustion in agricultural production when operating farm machinery and taking into account the whole agricultural mechanization process. This manuscript is neither soliciting for softer actions for agriculture nor does it pretend to recommend the best pathway. As an alternative, it appeals to energetically recommend the use of all available options within the production process and with thoughtfulness of the specific conditions and capabilities of each farmer and of the sector to attain the highest conceivable reduction.
energy consumption (EC), carbon emission, sustainable development, environmental analyses, agricultural machinery
Aleksandrowicz, L., Green, R., Joy, E. J., Harris, F., Hillier, J., Vetter, S. H., et al. (2019).
Environmental impacts of dietary shifts in India: A modelling study using nationallyrepresentativedata.Environ.Int.126,207–215. doi:10.1016/j.envint.
Andrea, M. C. S., Romanelli, T. L., & Molin, J. P. (2016). Energy flows in lowland soybean
production system in Brazil. Ci^encia Rural, 46(8), 1395e1400.
https://doi.org/10.1590/0103-8478cr20151298
ANFAVEA. (2019). Brazilian automotive industry yearbook 2019 Sao Paulo: Associac¸~ao
Nacional dos Fabricantes de Ve´?culos Automotores (p. 152).
ASABE Standards. (2011). D497.7: Agricultural machinery management data. St. Joseph, MI:
ASABE.
ASAE. (2000). ASAE Standards, 47th Ed. 2000. D497.4. and EP496.2. Agricultural Machinery
Management. ASAE, St. Joseph, MI. ASABE Standards, 57th Ed. 2010. D384.2, Manure
production and characteristics. ASABE, St. Joseph, MI.
Calcante, A., Brambilla, M., Oberti, R., & Bisaglia, C., 2017. Proposal to Estimate the Engine Oil
Consumption in Agricultural Tractors. A12``````````ppl. Eng. Agric., 33(2), 191–194
Carroll, E., Chang, J., Lodi, L., Rapsomanikis, G., Zimmermann, A., and Blandford, D. (2018).
'Thestateofagriculturalcommoditymarkets2018: Agricultural trade,' inClimate change and
food security (Rome, Italy: Food and Agriculture Organization of the United Nations).
Chandio, A. A., Jiang, Y., Rehman, A., and Rauf, A. (2020). Short and long-run impacts of climate
change on agriculture: Empirical evidence from China. Int. J. Clim. Change Strategies
Manag. 12 (2), 201–221. doi:10.1108/ijccsm-05-2019-0026
Dagar, V., Khan, M. K., Alvarado, R., Usman, M., Zakari, A., Rehman, A., et al. (2021). Variations
in technical efficiency of farmers with distinct land size across agro-climatic zones:
Evidence from India. J.Clean.Prod.315, 128109.doi: 10.1016/j.jclepro.2021.128109
Dyer, J. A., & Desjardins, R. L. (2006). Carbon dioxide emissions associated with the
manufacturing of tractors and farm machinery in Canada. Biosystems Engineering, 93,
107e118. https://doi.org/10.1016/j.biosystemseng.2005.09.011
Handler, F., & Nadlinger, M. (2012), D 3.8 Strategies for saving fuel with tractors Trainer
handbook Version 12/2012. Efficient 20. IEE/09/764/SI2.558250.
https://www.fendt.com/de/geneva-assets/article/94968/592540- fendt700vario-2002-td-de.pdf 15
https://www.volkswagenag.com/de/news/stories/2018/10/powerful-and-scalable-the-newid-battery-system.html
IPCC Second Assessment on Climate Change (1996). International panel on climate change.
Cambridge, UK: Cambridge University Press.
Jagerskog, A., Clausen, T. J., Holmgren, T., & Lexen, K. (2014). Energy and water: The vital link
for a sustainable future (p. 64). Stockholm: SIWI.
JEC Well-To-Wheels report v5 - Well-to-Wheels analysis of future automotive fuels and
powertrains in the European context
Keyes, S., Tyedmers, P., & Beazley, K. (2015). Evaluating the environmental impacts of
conventional and organic apple production in Nova Scotia, Canada, through life cycle
assessment. Journal of Cleaner Production, 104, 40e51. https://
doi.org/10.1016/j.jclepro.2015.05.03
Lampridi, M., Sorensen, C. G., & Bochtis, D. (2019). Agricultural sustainability: A review of
concepts and methods. Sustainability, 11, 5120e5146. https://doi.org/10.3390/ su11185120Lampridi, M., Kateris, D., Sorensen, C. G., & Bochtis, D. (2020). Energy footprint of mechanized
agricultural operations. Energies, 13, 769e783. https://doi.org/10.3390/en13030769
Lin, B., and Raza, M. Y. (2019). Analysis of energy related CO2 emissions in Pakistan. J. Clean.
Prod. 219, 981–993. doi:10.1016/j.jclepro.2019.02.112
Mekonnen, M. M., Romanelli, T. L., Ray, C., Hoekstra, A. Y., Liska, A. J., & Neale, C. M. U.
(2018). Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil.
Environmental Science & Technology, 52, 14508e14518. https://doi.org/10.1021/
acs.est.8b03359
Pakistan Cpeir (2017). Pakistan CPEIR final report may 2017. https://www. climatefinancedevelopmenteffectiveness.org/sites/default/files/publication/attach/ Pakistan-CPEIR2017.pdf.
Pakistan Economic Survey (2020). Pakistan economic survey 2019-20. http://www.
fnance.gov.pk/survey/chapters_19/Economic_Survey_2019_20.pdf.
Pandey, D., Agrawal, M., and Pandey, J.S. (2011). Carbon foot print: Current methods of
estimation. Environ. Monit. Assess. 178 (1), 135–160. doi:10.1007/s10661-010-1678-y
Pottier, A. (2022). Expenditure elasticity and income elasticity of GHG emissions: A survey of
literature on household carbon footprint. Ecol. Econ. 192, 107251. doi:10.1016/j.
ecolecon.2021.107251
Raza, M. Y., and Tang, S. (2022). Inter-fuel substitution, technical change, and carbon mitigation
potential in Pakistan: Perspectives of environmental analysis. Energies 15 (22), 8758.
doi:10.3390/en15228758
Raza, M. Y., Wu, R., and Lin, B. (2023). A decoupling process of Pakistan's agriculture sector:
Insights from energy and economic perspectives. Energy 263, 1–11. doi:10.1016/j.
energy.2022.125658
Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., and Chandio, A. A. (2021b). Towards
environmental Sustainability: Devolving the influence of carbon dioxide emission to
population growth, climate change, Forestry, livestock and crops production in Pakistan.
Ecol. Indic. 125, 107460. doi:10.1016/j.ecolind.2021. 107460
Rehman, A., Ma, H., Ozturk, I., Ahmad, M., Rauf, A., and Irfan, M. (2021a). Another outlook to
sector-level energy consumption in Pakistan from dominant energy sources and correlation
with economic growth. Environ. Sci. Pollut. Res. 28 (26), 33735–33750.
doi:10.1007/s11356-020-09245-7
Shujian, X. I. A. N. G., and Shigai, C. H. A. I. (2013). Deficiencies and improvements to ecological
footprint theory and practice. Resour. Sci. 35 (5), 1051–1058.
Sinisterra-Solís, N., Sanjuán, N., Ribal, J., Estruch, V., and Clemente, G. (2023). An approach to
regionalize the life cycle inventories of Spanish agriculture: Monitoring the environmental
impacts of orange and tomato crops. Sci. Total Environ. 856, 158909.
doi:10.1016/j.scitotenv.2022.158909
Soofi, A. F., Manshadi, S. D., and Saucedo, A. (2022). Farm electrification: A road- map to
decarbonize the agriculture sector. Electr. J. 35 (2), 107076. doi:10.1016/j.tej. 2022.107076
Spekken, M., Molin, J. P., & Romanelli, T. L. (2015). Cost of boundary manoeuvres in sugarcane
production. Biosystems Engineering, 129, 112e126. https://doi.org/10.1016/
j.biosystemseng.2014.09.00
Wackernagel, M., and Rees, W. (1998). Our ecological footprint: Reducing human impact on the
earth. columbia, Canada: New society publishersWang, Z., Yang, L., Yin, J., and Zhang, B. (2018). Assessment and prediction of environmental
sustainability in China based on a modified ecological footprint model. Resource.
Conservation Recycl. 132, 301–313. doi:10.1016/j.resconrec.2017.05.003
Wiedmann, T., Minx, J., Barrett, J., and Wackernagel, M. (2008). Allocating ecological footprints
to final consumption categories with input–output analysis. Ecol. Econ. Res. trends 56, 28–
48. doi:10.1016/j.ecolecon.2005.05.012
www.gcisc.org.pk/Pakistan%20Updated%20NDC%202021.pdf.http://www.fnance.gov.pk/surve
y/chapters_19/ Economic_Survey_2019_20.pdf.
Xiuhui, J., and Raza, M. Y. (2022). Delving into Pakistan's industrial economy and carbon
mitigation: An effort toward sustainable development goals. Energy Strategy Rev. 41,
100839. doi:10.1016/j.esr.2022.100839