INTERNATIONAL JOURNAL OF APPLIED SCIENCES AND MATHEMATICAL THEORY (IJASMT )

E- ISSN 2489-009X
P- ISSN 2695-1908
VOL. 11 NO. 3 2025
DOI: 10.56201/ijasmt.vol.11.no3.2025.pg1.13


A New Generalization of the Exponentiated Gumbel Type-2 distribution with Application to Reliability data

Ajayi Bamidele, Adeleye Najeem Adesola, Adefolarin David Adekunle


Abstract


The addition of an extra parameter to standard distributions is a common technique in statistical theory. This study introduces a new generalization of the Exponentiated Gumbel distribution named alpha power exponentiated Gumbel Type-2 (??????2) distribution. The ??????2 allows for a significant amount of versatility in modeling various data forms as it accommodates upside-down bathtubs, decreasing, and reversed-J shapes for hazard rate function. Some of the ??????2’s mathematical properties are derived in close forms. The maximum likelihood estimation technique was used for the purpose of estimation. An application to epoxy data demonstrate the flexibility of the ??????2 model compared to other models in the study.


keywords:

Alpha Power Exponentiated Gumbel Type-2 model, upside-down bathtubs, hazard rate


References:


Alizadeh, M., Ghosh, I., Yousof, H. M., Rasekhi, M., and Hamedani G. G. (2017). The generalized
odd generalized exponential family of distributions: properties, characterizations, and
applications. Journal of Data Science, 15, 443- 466.
Andrews, D. F., and Herzberg, A. M. (2012). Data: a collection of problems from many fields for
the student and research worker, Springer Science Business Media, New York.
Aryal, G. R., and Yousof, H. M. (2017). The exponentiated generalized-G Poisson family of
distributions. Economic Quality Control. 32, 1-17.
Azzalini, A. (1985). A class of distributions that includes the normal ones. Scandinavian journal
of statistics. pages 171–178.
Bourguignon, M., Silva, R. S., and Cordeiro, G. M. (2014). The Weibull-G Family of Distributions.
Journal of Data Science, 12, 53-68.
Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions. Journal of
Statistical Computation and Simulation. 81, 883-898.
Cordeiro, G. M., Afify, A. Z., Yousof, H. M., Pescim, R. R. and Aryal, G. R. (2017). The
exponentiated Weibull family of distributions: theory and applications. Mediterranean
Journal of Mathematics. 14, 1-22.
Cordeiro, G. M., Afify, A. Z., Ortega, E. M. M., Suzuki, A. K. and Mead, M. E. (2019). The odd
Lomax generator of distributions: properties, estimation, and applications. Journal of
Computational and Applied Mathematics, 347, 222-237
Dey, S., Alzaatreh, A., Zhang, C., and Kumar, D. (2017a). A New Extension of Generalized
Exponential Distribution with Application to Ozone Data. Science and Engineering.
https://doi.org/10.1080/01919512.2017.1308817
Dey, S., Sharma, V. K., and Mesfioui, M. (2017b). A New Extension of Weibull Distribution with
Application to Lifetime Data. Annals of Data. Science. https://doi.org/10.1007/s40745-
016-0094-8
Dey, S., Ghosh, I., and Kumar, D. (2019). Alpha-power transformed Lindley distribution:
properties and associated inference with application to earthquake data. Annals of Data
Science, 6(4), 623-650. https://doi.org/10.1007/s40745-018-0163-2.
Dey, S., Nassar, M., and Kumar, D. (2018). Alpha power transformed inverse Lindley distribution:
A distribution with an upside-down bathtub-shaped hazard function. Journal of
Computational
and
Applied
Mathematics.
348,
130-145.
https://doi.org/10.1016/j.cam.2018.03.037
Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications.
Communications
in
Statistics-Theory
and
methods,
31(4),
497–512.
https://doi.org/10.1081/STA-120003130.
Hassan, A. S., Marwa, A. A., Zaher, H., & Elsherpieny, E. A. (2014). Comparison of Estimators
for Exponentiated Inverted Weibull Distribution Based on Grouped Data. International
Journal of Engineering Research and Application. 4(1), 77-90.
Hassan, A. S., and Elgarhy, M. (2016). Kumaraswamy Weibull-generated family of distributions
with
applications.
Advances
and
Applications
in
Statistics,
48,
205–239.
https://doi.org/10.17654/AS048030205
Hassan, A. S, Mohammed, R. E., Elgarhy, M., and Fayomi, A. (2018). Alpha power transformed
extended exponential distribution: properties and applications. Journal of Nonlinear
Sciences and Applications. 12(4), 62–67. https://doi.org/10.22436/jnsa.012.04.05.
Khan, M. S, and King, R. (2012). Modified inverse Weibull distribution. Journal of Statistics
Applications and Probability. vol. 1, no. 2, pp. 115–132.
Keller, A. Z., Kamath, A. R. R. and Perera, U. D. (1982). Reliability analysis of C N C machine
tools. Reliability Engineering, vol. 3, no. 6, pp. 449–473.
Korkmaz, M. C., Yousof, H. M., Hamedani G. G. and Ali, M. M. (2018). The Marshall–Olkin
generalized-G Poisson family of distributions, Pakistan Journal of Statistics, 34(3), 251-
Mahdavi, A., and Kundu, D. A. (2017). A new method for generating distributions with an
application to the exponential distribution. Communications in Statistics-Theory and
Methods, 46(13), 6543–57. https://doi.org/10.1080/03610926.2015.1130839
Marshall, A. W., and Olkin, I. (1997). A new method for adding a parameter to a family of
distributions with application to the exponential and Weibull families. ??????????.
84(3):641–652
Moors, J. J. A. (1998). A quantile alternative for kurtosis. Journal of the Royal Statistical Society
Ser. D., The Statistician, 37, 25-32. https://doi.org/10.2307/2348376
Mudholkar, G. S. and Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing
bathtub failure-rate data. IEEE Transactions on Reliability. 42(2):299–302.
Nassar, M., Alzaatreh, A., Mead, M., and Abo-Kasem, O. (2017). Alpha power Weibull
distribution: Properties and applications. Communications in Statistics-Theory and
Methods, 46(20), 10236–52. https://doi.org/10.1080/03610926.2016.1231816.
Ogunde, A. A., Fayose, S. T., Ajayi, B., and Omosigho, D. O. (2020). Extended Gumbel Type-2
Distribution: Properties and Applications. Journal of Applied Mathematics Volume 2020,
Article ID 2798327.
Ogunde, A. A., Ajayi, B. and Omosigho, D.O. (2020a). Alpha Power Transformed Extended Bur
II Distribution: Properties and Application. Asian Research Journal of Mathematics, 6(8):
50-63.
Ogunde, A. A, Fayose, S. T., Ajayi, B., and Omosigho, D. O. (2020b). Properties, Inference, and
Applications of Alpha Power Extended Inverted Weibull Distribution. International
Journal of Statistics and Probability. Vol. 9, No. 6.
Oluyede, B. O., Pu, S., Makubate, B., and Qiu, Y. (2018). The Gamma Weibull-G Family of
Distributions, to appear in Austrian Journal of Statistics.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo