INTERNATIONAL JOURNAL OF APPLIED SCIENCES AND MATHEMATICAL THEORY (IJASMT )

E- ISSN 2489-009X
P- ISSN 2695-1908
VOL. 11 NO. 2 2025
DOI: 10.56201/ijasmt.vol.11.no2.2025.pg11.25


Bridging Theory and Computation: MATLAB-Based Numerical Methods for Solving Initial Value Problems in Ordinary Differential Equations

Udoh, Ndipmong A, Egbuhuzor, Udechukwu Peter


Abstract


Numerical methods are very significant as it provides approximate solutions to initial value problems (IVPs) in ordinary differential equations (ODEs) where analytical methods fail. This research work considers the implementation of four widely-used numerical methods: Euler’s Method, Runge-Kutta Fourth-Order Method, Heun’s Method, and Milne’s Predictor-Corrector Method, using MATLAB, a powerful tool for technical computing. This work aims to serve as a practical guide for students and researchers, illustrating the seamless integration of theoretical concepts with computational techniques. It provides a structured framework that can be used for any initial value problems (IVPs) in ordinary differential equations (ODEs). Using a single example problem, we demonstrate the step-by-step MATLAB programming of each method, emphasizing computational efficiency, accuracy and error analysis. This research underscores MATLAB’s capacity to simplify complex numerical computations and offers recommendations for future enhancements. By bridging theoretical foundations and practical applications, this work contributes to the broader understanding and accessibility of numerical methods in scientific computing.


keywords:

Matlab; euler’s method; runge-kutta method; heun’s method; milne’s method


References:


[1]. MathWorks, (2024). MATLAB and Simulink Documentation. Retrieved from
(https://www.mathworks.com/help/).
[2]. Moler, C. (2020). Numerical Computing with MATLAB. SIAM.
[3] Bouchaib Radi & Abdelkhalak El Hami (2018) Advanced Numerical Methods with Matlab 2.
ISBN 978-1-78630-293-9. John Willey & Sons, Inc.
[4]. Gander, W., & H?ebí?ek, J. (2018). Solving Problems in Scientific Computing Using
MATLAB and Octave. Springer.
[5]. Higham, D. J., & Higham, N. J. (2017). MATLAB Guide. SIAM.
[6]. Gupta, V., & Rana, S. (2023). MATLAB for Modeling and Simulation of Complex Systems.
Journal of Computational Science, 48, 102548.
[7]. Chen, Y., & Wang, H. (2022). Hybrid Numerical Methods Implemented in MATLAB for
Large-Scale Systems. Applied Numerical Mathematics, 174, 106010.
[8]. Ali, S., & Khan, M. (2021). Integrating MATLAB in Teaching Numerical Methods: A
Comparative Study. International Journal of Education Technology in Higher Education, 18(1),
[9]. Abbas, S. M., & Zhang, R. (2023). Numerical Solutions to Differential Equations Using
MATLAB Toolboxes. Mathematics and Computers in Simulation, 212, 181–197.
[10]. Lin, T., & Chou, P. (2023). Advancing Computational Performance through MATLAB:
Applications in Scientific Computing. Journal of Computational Methods in Science and
Engineering, 23(2), 423-437.
[11] Smith, R., & Brown, A. (2021). Numerical Solutions for Ordinary Differential Equations: A
Review of Euler’s Method. Journal of Computational Mathematics, 46(2), 159–172.
[12] Chapra, S. C. & Canale, R. P. (2010). Numerical Methods for Engineers (6th edition).
McGraw-Hill Education.
[13] Jones, M., Miller, D., & Walker, H. (2022). Runge-Kutta Methods for Solving ODEs: Theory
and Practice. Applied Numerical Analysis, 58(4), 378–393.
[14] Williams, L., & Zhang, X. (2023). A Comprehensive Overview of Heun’s Method for
Numerical Integration of ODEs. International Journal of Numerical Methods, 60(3), 229–242.
[15] Kumar, S., Gupta, P., & Rao, M. (2023). Milne’s Predictor-Corrector Method for Solving
Stiff Differential Equations: A Comparative Analysis. Journal of Computational and Applied
Mathematics, 78(5), 210–222.
[16] Otto, S. R. & Denier, J. P. (2005). An Introduction to Programming and Numerical Methods
in MATLAB. Springer-Verlag London Limited. ISBN-10: 1-85233-919-5
[17] Gupta, R., Kumar, S., & Singh, P. (2022). Numerical solutions of differential equations using
MATLAB: A practical approach. Journal of Computational Mathematics, 45(3), 210–225.
[18] Sharma, V., & Patel, A. (2023). Advances in numerical analysis: Implementing ODE solvers
with MATLAB. International Journal of Applied Mathematics and Computation, 59(2), 101–118.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo