INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND MATHEMATICAL THEORY (IJCSMT )

E-ISSN 2545-5699
P-ISSN 2695-1924
VOL. 11 NO. 1 2025
DOI: 10.56201/ijcsmt.v11.no1.2025.pg97.114


Leveraging Application Programming Interface (API) Call Patterns for Real-Time Dynamic Malware Detection Using Deep Learning

V C Uzodinma, N D Nwiabu, E O Taylor


Abstract


With the rise in new malware threats in recent years, where data security and response time are crucial for both businesses and home users, the threat is expected to worsen. Despite the widespread use of anti-malware software, malware infections continue to grow rapidly. These attacks are often aimed at stealing credentials, executing unauthorized commands, or installing additional malware. One concerning method is dynamic malware attacks through API calls, where malicious code interacts with an application's APIs in real-time. The attacker exploits vulnerabilities in the application or its infrastructure to access sensitive data or take control of the system. To address the issue of dynamic malware attacks through API calls, this paper introduces a technique for detecting and classifying such attacks.


keywords:

API Call Pattern, Real-Time, Malware


References:


Burnap, P., French, R., Turner, F. & Jones, K. (2018). Malware classification using self 859 organizing
feature maps and machine activity data. Computer Security, 73, 399–410.
Elhadi, A. A. E., Maarof, M. A. & Barry, B. I. (2013). Improving the detection of malware be- 874
haviour using simplified data dependent API call graph. International Journal Security
Application, 7 (5), 875 29–42.
Eslam, A. & Ivan, Z. (2018). A dynamic Windows malware detection and prediction method based on
contextual understanding of API call sequence. Computers & Security, 30(40), 1-15.
Gandotra, E., Bansal, D. & Sofat, S. (2014). Malware analysis and classification: a survey. 885 Journal
of Information Security, 5 (02), 56.
Gibert, D., Mateu, C. & Planes, J. (2020). The rise of machine learning for detection and classification
of malware: Research developments, trends and challenges. Journal of Network and Computer
Applications, 153(2020), 1-22, 2020.
Karbab, E. B., Debbabi, M., Derhab, A. & Mouheb, D. (2018). MalDozer: Automatic framework for
android malware detection using deep learning, Digital Investigation 24, 548-559.
Kim, T., Kang, B., Rho, M., Sezer, S. & Gyu, E. (2019). A Multimodal Deep Learning Method for
Android Malware Detection using Various Features, in IEEE Transactions on Information
Forensic and Security, 10(3), 773-778.
Li, J., Sunk, L., Yan, Q., Zhiqiang, L. Srisaan, W. & Heng, Y. (2018). “Significant Permission
Identification for Machine Learning Based Android Malware Detection”, in IEEE Transactions
on Industrial Informatics, 14(7), 3216-3225.
Mario, L., Marta, C., Damiano, D., Fabio, M. & Francesco, M. (2019). Dynamic malware detection and
phylogeny analysis using process mining. International Journal of Information Security, 18,
257–284.
McLaughlin, N. Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E., Zhao, Z.,
Doupe, A, & Ahn, G. (2017). Deep Android Malware Detection, Proceeding on the Seventh
ACM on Conference on Data and Application Security and Privacy, 301-308.
Nighat, U., Saeeda, U., Fazlullah, K., Mian, A., Ahthasham S., Mamoun A., Paul W. (2021). Intelligent
Dynamic Malware Detection using Machine Learning in IP Reputation for Forensics Data
Analytics. Future Generation Computer Systems118 (2021), 124–141.
Pengbin, F., Jianfeng M., Cong S., Xinpeng X. & Yuwan M. (2018). A Novel Dynamic Android
Malware Detection System with Ensemble Learning. IEEE Access, 6, 30996-31011.
Qiao, Y., Yang, Y., He, J., Tang, C. & Liu, Z. (2014). CBM: free, automatic malware anal- 923 ysis
framework using API call sequences. In: Knowledge Engineering and Man- 924 agreement.
Springer, Berlin, Heidelberg, 225–236.
Rieck, K., Holz, T., Willems, C., Dussel, P. & Laskov, P. (2008). Learning and classification of
malware behavior, in DIMVA ’08: Proceedings of the 5th international conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Berlin, Heidelberg:
Springer-Verlag, 108–125.
Souri, A. & Hosseini, R. (2018). A state-of-the-art survey of malware detection approaches using data
mining techniques, Human. Centric. Computing and Information Sciences, 1-22.
Vinayakumar, A., Alazab, M., Soman, M., Poornachandran, P. & Venkatraman, S. (2019). “Robust
Intelligent Malware Detection Using Deep Learning” In IEEE Access, 7, 46717-46738.
Vinayakumar, M., Alazab, K., Soman, P. & Poornachandran, S. (2019). Venkatraman “Robust
Intelligent Malware Detection Using Deep Learning” In IEEE Access, (7), 46717-46738.
Yanfang, Y. (2017). A Survey on Malware Detection Using Data Mining Techniques, ACM Computing
Surveys, 50.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo