International Journal of Agriculture and Earth Science (IJAES )

E- ISSN 2489-0081
P- ISSN 2695-1894
VOL. 11 NO. 1 2025
DOI: 10.56201/ijaes.vol.11.no1.2025.pg163.177


Investigations of Myco-active Metabolites of two Endophytic Mushrooms; ( Daldinia concentricaand Irpex lacteus ) and their Mode of Actions Against Phytopathogenic Fungi

Nmom, F. W., Wofu, N. B and Agbagwa, S. S.


Abstract


Endophytic fungi are refered to fungi that live in plant tissues throughout their entire or partial life cycle, establishing mutually beneficial symbiotic relationship with their host without causing any disease in their host but promoting their growth. Many fungal endophytes produce secondary metabolites which are anti-fungals and strongly inhibit the growth of plant pathogens through enhanced mechanisms of actions. This study aimed at assessing the mycoactive chemicals of two endophytic fungi for their antifungal properties against plant pathogens. Matured fruit bodies of Daldinia concentrica and Irpex lacteus were analyzed for the presence and quantity of alkaloids, tannins, flavonoids, phenols, saponins, terpenoids, oxalate and hydrogen cyanide, using standard methods as described by Obadoni and Ochuko. The results revealed that for D. concentrica, the contents of the mycochemicals were highest in tannins, followed by alkaloids and terpenoids; however, the contents of saponins and flavonoids were at appreciable ranges while oxalate which was not important in the study was the lowest. For I. lacteus, tannic acid and phenol had the highest contents of the mycochemicals. However, flavonoids and terpenoids had the lowest contents, while saponin was at an appreciable range. The findings of the study confirmed that with the presence of the mycoactive-chemicals inherent in the endophytes; they could protect plants against pests and pathogens through enhanced mechanisms as indicated in the study.


keywords:

Endophytic fungi, Daldinia concentrica, Irpex lacteus, Mycoactive Chemicals, Phyto-pathogens, Mechanisms of actions, Antifungal.


References:


Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. L., Maynard, Z., Robbins, N and Herre, E. A.
(2003). Fungal endophytics limit pathogen damage in a tropical tree. Proceedings of
the National Academy of Sciences. USA 100: 15649 – 15654.
Bar-Num, N. and Meyer, A. M. (1999). Cucurbitacins protect cucumber tissue against infection
by Botrytis cinerea. Phytochem. 29(3): 787 – 791.
Bostock, P. M., Wilcox, M., Wang, G. and Adaskaveg, J. E. (1999). Suppression of Monililia
fructicola cutinase production by peach fruit surface phenotic acids. Physiological
Molecular Plant Pathology, 54(1-2): 37 – 50.
Busby, G. B. J., Bankd, G., Le, Q. S., Jallow, M., Bougama, E., Mangano, V. D., Amenga-
Etego, L. N., Enimil, A., Apuijoh, T., Ndila, C. M., Manjurano, A., Nyirongo, V.,
Doumba, O., Rocket, K. A., Kwiatkowski, D. P. and Spencer, C. C. A. (2016).
Admixture into and within sub-sahara Africa. Elife. PMCID: PMCU 9158151/PMID
Carbungco, E. S., Pedroche, N. B., Panes, V. A. and De la Crutz, T. E. (2019). Characterization
of Endophytic fungi associated with the leaves of Moringa oleifera Lam. Acta Hortic,
1158, 373 – 880. DOI.17660/Acta Hortic 2017-1158-42. ://doi.orglio.17660/Acta
Hortic 2017. 1158. 42.
Chang, S. T. (1999). Global impact of edible and medicinal mushrooms on human welfare in
21st century: Nongreen revolution. International Journal of Medical Mushrooms. Vol.
14.10.
Chen, Y., Hu, B., Xing, J. and Li, C. (2020). Endophytes: the novel sources for plant t. erpenoid
biosynthesis.
Applied
Microbiological
Biotechnology
105:
4501

Doi:10.10071500253-021-11350-7.PMID.
Ejikeme, C. M., Ezeonu, E. S. and Augustine, N. E. (2014). Determination of physical and
phytochemical constituents of some tropical timbers indigenous to Niger Delta area of
Nigeria. European Scientific Journal, Vol. 10 No. 18.
Engelmeier, D. and Hadacek, F. (2006). Antifungal natural products: Assays and applications;
In: Rai et al. (eds). Naturally, occurring bioactive compounds, Elsevier Science Ltd.,
pp: 423 – 467.
Ezeonu, C. S. and Ejikeme, C. M. (2016). Qualitative and Quantitative determination of
phytochemical and contents of indigenous Nigerian Softwoods. New Journal of
Science, 2016 (2016): 9. Doi:10.1155/201615601397.
Gao, F. K., Dai, C. C. and Liu, X. Z. (2005). Mechenisms of fungal endophytes in plant
protection against pathogens. African Journal of Microbiology Res. 4(13): 1346 – 1351.



Gaulay, A. Mariana, P., Guilerme, V. Y., Abdul kaber, A., Sadiye, H. M. A. Smedley, L. E.
Dixon and S. A. Boden (2004). Photoperiod – l reglates the wheat infloresce
transcriptome to influence spikelet architecture and flowering time. Curr. Biol. 34(11):
2330-2343 doi:10.1016/j.cub.2004.04.029.
Harbourne, J. B. (1983). Phytochemical methods: A guide to modern techniques of plant
analysis third edition.
Harris, J. E. and Dennis, C. (1976). Antifungal activity of post-infectional metabolites from
potato tubers. Physiology Plant Pathology, 9:155 – 165.
Harris, J. E. and Dennis, C. (1977). The effect of Post-infectional potato tubers metabolites on
zoospores of oomycetes. Physiology Plant Pathology, 11: 163 – 169.
Hellwig, S. M. M., Rodriguez, M. E., Berbers, G. A. M., Vande Winkel, J. G. J. and Mooi, F.
R. (2003). New supplement. Journal of Infectious Diseases, 188: 1868 – 1874.
Isaka, M., Palasa, S., Supothina, S., Srichomithong, K. and Choeyklin, R. (2016). Biological
waste water treatment of 1, 4-dioxane using polyethylene glycol gel carriers entrapping
Afipia species. Journal of Bioscience, Bioengineering 99: 232-236.
Ito, Y., Kitagawa, T., Yamanishi, M., Katahira, S., Izawa, S., Irie, K., Furutani-Seiki, M. and
Matsuyama, C. (2016). Enhancement of protein production via the streng DITI
terminator and two RNA-binding proteins in Saccharomyces cerevisae. Sci. Rep. 6:
Jabber, L. R. (2017). Fungal entomopathogens as endophytes: can they promote plant growth?
Biocontrol Science and Technology, (1): 28 – 41.
Jonathan, S. G. (2002). Vegetative growth requirements and antimicrobial activities of some
higher fungi in Nigeria. University of Ibadan, Nigeria. (PhD Thesis).
Keukens, E. A. J., Truus de urije; Charles, H. J. P., Falrie Rudu, A., Demel; Wim, W. F. Jongen
and Ben de Kruijff (1992). Dual specificity of sterol-mediated glycoalkaloid induced
membrane disruption. Biochemica et Biophysica, Acta (BBA). Biome-Biomembranes.
Vol. 1110, Issue 2: 127 – 136.
Kindl, R. (2000). Disease specific modules. https://www.kindl.org/english/questionnaires.
Kumar, D. S. S. and Hyde, K. D. (2004). Biodiversity and tissue-recurrence of endophytic fungi
in Tripterygium wilfordii. Fungal Diversity at: https://www.researchgate.net/
publication/ 216110982.



Liu, G. R., Huo, R. Y., Zhai, Y. N. and Liu, L. (2021). New bioactive sesquiterpenoids from
the plant endophytic fungus Pestalotiopsistheae. Frontier Microbiology, 12:641504.
Doi: 10.3389/fmicb 2021.641504.
Luo, M. Jiang, L. K. and Zou, G. L. (2002). The mechanism of loss of germination ability of
Aspergillus flavus spore with citral. Zhongguo shengwu Huaxue Yu Fenzi Shengwu
Xuebao. Chem. Abs. 137: 60144.
Munro, A. B. (2000). Oxalate in Nigerian vegetables W/African Journal of Biol. Appl. Chem.,
12(1): 14 – 18.
Nmom, F. W. and Ajuru, M. G. (2019). Efficacy of crude leaf extracts of Ficus exasperata
(Vahl) in the control of powdery mildew on Vernonia amydalina (Del). Presented at
the 11th Annual and Scientific Conference of Mycological Society of Nigeria
(MYCOSON), Port Harcourt.
Obadoni, B. O. and Ochuko, P. O. (2001). Phytochemical studies and comparative efficacy of
the crude extract of some homeostatic plants in Edo and Delta States of Nigeria. Global.
Journal of Pure and Applied Science, 86: 203 – 208.
Petrini, O. and Muller, E. (1979). A comparative study of fungal endophytes in xylem and
whole stem. Pilzliche endophytem am Beispiel Von Junniperus Communis L. Sydowia,
Transactions of the British Mycological Society, Vol. 91, Issue 2 pp: 233 – 238.
Railes, R. (1992). Effect of chromium chloride supplementation on glucose tolerance and
serum lipids including HDL of adult men. Am Journal Clini. Nutr., 34: 697 – 700.
Rustamova, N., Bozorov, K. Efferth, T. and Yillia (2020). Novel synthesis and biological
properties. Phytochem. Rev. 2020, 19: 425 – 448. Doi.10.1007/511101-020-090672-x.
Sammee, R., Del, I. B., Lumyeng, P., Izumeri, K. and Lumyoung, S. (2003). Nutritive value of
popular wild edible mushrooms from northern Thailand. Food Chemistry, 82: 527-532.
Doi:10.1016/50308-8146(02)00595-2.
Sandro, R., Joao, L. A. and Thiatine, R. M. (2014). Endophytic fungi: expanding the arsenal of
industrial enzyme producers. J. Ind. Microbiol. Biotechnol. 41: 1467 – 1478. Doi:
10.1009/510295 – 014 – 1496-2.
Sandro, R., Jocio, L. A. and Thiatine, R. M. (2014). Endophytic fungi expanding the arsenal of
industrial enzyme producers. Journal of Industrial Microbiology Biotechnology,
41:1467-1478.001:10.1007/5/0295-014:1496-2.
Sanjay, P. (2015). Phytochemical screening, total phenolic content, antibacterial and
antibacterial and antioxidant activity of wild edible mushroom, Pleurotus ostreatus.
International Research Journal of Pharmacy, Vol. 6, Issue 1, pp: 65 – 69.



Silva, P. R. F., Sangoi, G. A. L., Streider, M. L., Silva, A. A. (2016). Management of winter
cover crops to maize grown in succession in no-till system. Ciencia Rural, 36 (3): 1011-
Sofowora, A. (1973). Phytochemical screening of medicinal plants and traditional medicine in
Africa edition. Spectrum books ltd. Nigeria: 150 – 156.
Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural
products. Microbiology and Molecular Biology Reviews, 67, pp: 491 – 502.
Suwannarach, N., Kumla, J. Buscaban, B., Nuagmek W. and Matsni, K. (2013). Biofum


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo