INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND MATHEMATICAL THEORY (IJCSMT )
E-ISSN 2545-5699
P-ISSN 2695-1924
VOL. 11 NO. 1 2025
DOI: 10.56201/ijcsmt.v11.no1.2025.pg115.131
IDONIBOYE, Omiete
This paper revisits John von Neumann's logical structures within the context of topology and its application in hazard analysis. Topology, with its focus on spaces, continuity, and transformations, offers a powerful framework for understanding complex systems, especially in hazardous environments like industrial fabrication sites. By modelling the site as a topological space, the paper explores how topological embeddings and persistent homology can identify and predict hazardous zones. It demonstrates how continuity and transformation analysis can assess the effects of changes such as structural modifications or environmental alterations. Furthermore, the paper uses logical proofs to validate hazard predictions and mitigation strategies, showcasing how topological methods can inform risk management. By embedding the industrial site into higher-dimensional spaces and introducing barriers, the analysis shows how topological data analysis can reduce hazard risks, specifically in spark- induced fire scenarios. This approach provides a rigorous, logical basis for predicting, analyzing, and mitigating hazards in complex environments.
Hazard, Topology, Environment, Modelling and Homology
Aspray, W. (1990). John von Neumann and the origins of modern computing. MIT Press.
Brouwer, L. E. J. (1912). "Über Abbildungen von Mannigfaltigkeiten." Mathematische
Annalen, 71(1), 97–152. https://doi.org/10.1007/BF01456803
Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2),
255-308. https://doi.org/10.1090/S0273-0979-09-01249-X
Chang, C. C., & Keisler, H. J. (2012). Model Theory. Dover Publications.
Marker,
D.
(2002).
Model
Theory:
An
Introduction.
Springer.
Edelsbrunner, H., & Harer, J. (2010). Computational topology: An introduction. American
Mathematical Society.
Enderton, H. B. (2001). A Mathematical Introduction to Logic. Academic Press.
Hatcher, A. (2002). Algebraic topology. Cambridge University Press.
Munkres, J. R. (2000). Topology (2nd ed.). Prentice Hall.
Neumann, J. (1956). The Mathematical Foundations of Quantum Mechanics. Princeton
University Press.
Skolem, T. (1929). Über die Erfüllbarkeit oder Unmöglichkeit von Systemen logischer Sätze.
Ergebnisse eines mathematischen Kolloquiums, 3(1), 1-6.
Smorynski, C. (1977). The incompleteness theorems. In J. Barwise (Ed.), Handbook of
Mathematical Logic (pp. 821–865). North-Holland.
Spanier, E. H. (1981). Algebraic topology. Springer-Verlag.
Tarski, A. (1956). The concept of truth in formalized languages. In A. Tarski (Ed.), Logic,
semantics, metamathematics (pp. 152-278). Hackett.
Von Neumann, J. (1947). The Mathematician. In James R. Newman (Ed.), The World of
Mathematics (pp. 204–218). Simon & Schuster.
Idoniboye, O. (2023). “Dilemmatic Arguments in Marie Pauline Eboh’s Igbo Logic: An
Annotation of Boolean Logic” in Anthology of Authentic African Philosophy: A
Reconstructionist View, edited by Eboh, M. P. & Elechi, M. 245.