International Journal of Engineering and Modern Technology (IJEMT )

E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 10 NO. 11 2024
DOI: 10.56201/ijemt.v10.no11.2024.pg92.107


The Petrology, Geochemical Assessment of Lithium Pegmatite Rocks and Its’ Industrial Applications from Kariya Province, Ganjuwa L.G.A., Bauchi State, North Eastern, Nigeria

Idris Ismail Kariya, Abdullatif Lawal, Fatima Saidu, Abdulkarim Ibrahim Kwami, Amina Ali


Abstract


The Petrology, Geochemical Assessment of Lithium Pegmatite Rocks and Its’ Industrial Applications from Kariya Province presents a comprehensive analysis of the geochemical characteristics of lithium and associated elements in Kariya Province. A total of 35 geochemical samples were processed to evaluate lithium geochemical background and identify potential sources of lithium mineralization. The study reveals significant variations in lithium concentrations among the different areas, except for minimum anomalies values observed within some locations. The findings of this study point toward areas with high potential for lithium pegmatite and related granitic rocks deposits. The insights provided in this study offer valuable information for exploring and developing the significant lithium mineral resource in Kariya area. The identified potential sources of lithium mineralization areas that can serve as crucial guidelines for future exploration efforts in the region are; Wushi, Filin Shagari, Jangu Sabuwa, Gadar Maiwa, Rakajuwa, Ringim and Kafin Madaki towns.



References:


Averill, W. A., and Olson, D. L. (1978). A review of extractive processes for lithium from ores
and brines. Energy 3, 305-313. Doi:10.1016/0360-5442(78)90027-0

Batchelor, R. A. and Bowden, P. (1985). Petrogenetic Interpretation of Granitoid Rock
Series Using Multicationic Parameters. Chemical Geology, 48, 43-55.
http//dx.doi.org/10.1016/0009-2541(85)90034-8

Barber, Z.P., Trench, A., Groves, D.I., 2022. Recent pegmatite-hosted spodumene discoveries
in Western Australia: insights for lithium exploration in Australia and globally.
Appl. Earth Sci. 131 (2), 100–113. https://doi.org/10.1080/
25726838.2022.2065450.

Cerny, P. (1991a). Rare-element granitic pegmatites. Part 1: Anatomy and internal evolution
of pegmatite deposits. Geoscience Can. 18, 49-67.

Cerny, P. (1991b). Rare-element granitic pegmatites. Part II: Regional to global environments
and petrogenesis. Geoscience Can. 18, 68-81

Gao, Y., Bagas, L., Li, K., Jin, K., Liu, Y., and Teng, J. (2020). Newly discovered Triassic
lithium deposits in the dahongliutan area, north west China. A case study for
the detection of lithium-bearing pegmatite deposits in rugged terrains using
remote-sensing data and images. Front Earth Sci. 8,
591966.doi:10.3389/feart.2020.59196

Groves, D. I., Zhang, L., Groves, I. M. and Sener, A. K. (2022). Spodumene: The key lithium
mineral in giant lithium-Ceasium- Tantalum pegmatites. Acta Pet. Sin. 38, 1-
8.doi:10.18654/1000-0569/2022.01.01

Middlemost, E. A. K. (1994). Naming Materials in the Magma/ Igneous Rocks systems.
Earth-Science
Reviews,
37,215-244.
https://dx.doi.org./10.1016/0012-
8252(94)90029-9

Muller, A., Reimer, W., Wall, F., Williamson, B., Menuge, J., Bronner, M., et al., (2022). Green
Pegmatite exploration for pegmatite minerals to feed the energy transition: First
steps towards the green stone age. Geological Society Publishers. 526.doi:
10.1144/sp526-2021-189

London, D., (2018). Ore-forming processes within granitic pegmatites. Ore Geol. Rev.
101, 349–383. https://doi.org/10.1016/j.oregeorev.2018.04.020.




Sykes, J.P., Schodde, R., (2019|). A global overview of the geology and economics of
lithium production. Presentation 1–65. https://doi.org/10.13140/
RG.2.2.18537.42088.

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. and Zanettin, B. (1986). A chemical
classification of volcanic rocks based on the total alkali-silica diagram: Journal
of Petrology, v. 27, p. 745–750.

Shen, P., Pan, H., Li, C., Feng, H., He, Y., et al., (2022). Newly-recognized Triassic higly
fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal
fertility and connection with the No.3 pegmatite. Gondwana res. 112, 24-51.
Doi:10.1016/j.gr.2022.09.007

Zhang, X., Aldahri, T., Tan, X., Liu, W.,Zhang, L., and Tang, S. (2020). Efficient co-
extraction of lithium, rubidium, ceasium and potassium from lepidolite by
process intensification of chlorination roasting. Chemical Engineerinng
Process. Process intensif. 147, 107777.doi:10.1016/j.cep.2019.107777

FIGURE 1


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo