INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )
E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 10 NO. 6 2024
DOI: 10.56201/ijccp.v10.no6.2024.pg51.59
Abubakar Mustapha Ngoshe
s Recent studies in bioinorganic chemistry and drug design have revealed the role of transition metal complexes as therapeutic compounds and diagnostic agent in medicine. Dithiocarbamates are organosulphur ligands which have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. Their application as anticancer, antimicrobial, medical imaging and anti-inflammatory agents have been reported. According to World Health Organization (WHO) about 422 million people worldwide have diabetes, the majority living in low-and middle-income countries, and 1.5 million deaths are directly attributed to diabetes each year. Increasing resistance to available drugs and their associated side-effects have drawn wide attention towards designing alternative therapeutic strategies for control of hyperglycemia and oxidative stress The development of antidiabetic metal complexes replacing insulin injection to regulate sugar levels appears to be promising. The administration of vanadium and zinc in form of inorganic salt to control glucose level in the blood plasma have been achieved. This article reviews the applications of dithiocarbamate and its metal complexes as potential agent in the management of diabetes.
dithiocarbamate, complex, diabetes, medicine
Adeyemi J. O and Onwudiwe D. C (2020). The mechanisms of action involving dithiocarbamate
complexes in biological systems, Inorganica Chimica Acta, 511: 119809
Adokoh C. K. (2020). Therapeutic potential of dithiocarbamate supported gold compounds. R oyal
Soc.Chem Adv. 10, 2975-2988. DOI: 10.1039/C9RA09682E .
Ajiboye T. O; Ajiboye, T. T; Marzouki, R. and Onwudiwe, D. C (2022). The versatility in the
application of dithiocarbamates. I. Journ. Mol. Sci. 23(3) 1317. Doi:103390/ijms2303131
Al-Obaidy G.S , Ibraheem K.R , and Mesher M.F (2020). Metal complexes derived from
dithiocarbamate ligand: formation, spectral characterization and biological activity. Syst
Rev Pharm. 2020;11:360–368. 10.31838/srp.2020.6.57.
Azam A , Raza M. A and Sumrra S.H (2018). Therapeutic Application of Zinc and Vanadium
Complexes against Diabetes Mellitus a Coronary Disease: A review, Open Chemistry
https://doi.org/10.1515/chem-2018-0118
Berry, D.J.; Torres Martin de Rosales, R.; Charoenphun, P.; and Blower, P.J. (2012).
Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini Rev. Med.
Chem.12: 1174–1183.
Buac D, Schmitt S, Ventro G, Kona F.R and Dou Q. P (2012). Coordination base on
dithiocarbamate compounds as a potent proteasome inhibitor in human cancer cells Mini-
Rev. Med. Chem., 12: 1193–1201
Dugganaboyana G.K, Mukunda C.K, Jain A, Kantharaju R.M, Rani R. Nithya R.R, et al.,
(2023), Environmentally benign silver bio-nanomaterials as potent antioxidant,
antibacterial, and antidiabetic agents: Green synthesis using Salacia oblonga root extract,
Front. Chem. 11:1114109. doi: 10.3389/fchem.2023.1114109
El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa,
H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; et al. (2014). In vitro anti-proliferative and
anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol.
21: 283–292.
Elahabaadi E., Salarian A.A. and Nassireslami E. (2021). Design, Synthesis, and Molecular
Docking of Novel Hybrids of Coumarin-Dithiocarbamate Alpha-Glucosidase Inhibitors
Targeting Type 2 Diabetes Mellitus. Polycycl. Aromat. Compd: 1–11.
doi: 10.1080/10406638.2021.1887295.
Elberg, G.; He, Z.; Li, J.; Sekar, N. and Shechter, Y. (1997). Vanadate activates membranous
nonreceptor protein tyrosine kinase in rat adipocytes. Diabetes, 46: 1684–1690.
Fayyaz S, Shaikh M , Gasperini D , Nolan S.P , Smith A.D and MChoudhary M.I (2021). In vitro
and in cellulo anti-diabetic activity of Au(I) and Au(III)-isothiourea
complexes.
Inorganic chemistry communications 3: 428
DOI:10.1016/j.inoche.2021.108666
Javed J. et al. (2016). Organotin(IV) derivatives of o-isobutyl carbonodithioate: Synthesis,
spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological
activities. Elsevier: Polyhedron, 104: 80-90. https://doi.org/10.1016/j.poly.2015.11.041
Kartina D., Wahab W., Ahmad A., Raya I and Irfandi R. (2019). Synthesis and Characterization
of Zn(II)Leucin-Dithiocarbamate Complex and Their Potential as Anti-Tuberculosis
Kurniawati M, and Mahdi C (2014). The effect of juice mango stem rind (Garcinia
mangostana L.) to blood sugar levels and histological of pancreatic rats with the
induction of streptozotocin. J Pure Appl Chem Res. 3(1):17.
Maanvizhi S, Boppana T, Krishnan C and Gnanamani A (2014). Metal complexes in the
management of diabetes mellitus: A new therapeutic strategy. International Journal of
Pharmacy and Pharmaceutical Sciences 6(7):40-44
Mansouri-Torshizi H, Saeidifar M, Khosravi F Divsalar A, Saboury A. A and Hassani F (2011).
DNA binding and antitumor activity of cis-diimineplatinum
(II)
and
palladium(II)
dithiocarbamate complexes., Bioinorg. Chem. Appl. 2011: 394506.
Marzano C, Ronconi L, Chiara F, Giron M. C, Faustinelli I, Cristofori P, Trevisan A
and
Fregona D (2011). Int. J. Cancer, 2011, 129, 487–496
Mollazadeh M., Mohammadi-Khanaposhtani M., Valizadeh Y., Zonouzi A., Faramarzi
M.A., Kiani M., Biglar M., Larijani B., Hamedifar H., Mahdavi M., et al. (2021). Novel
Coumarin Containing Dithiocarbamate Derivatives as Potent alpha-Glucosidase Inhibitors
for
Management
of
Type
2
Diabetes. Med.
Chem. 17:264–272.
doi: 10.2174/1573406416666200826101205.
Mukherjee,V. Kumar, A. K. Prasad, H. G. Raj, M. E. Bracke, C. E. Olsen, S. C. Jain and V.
S. Parmar, (2001). Synthetic and biological activity evaluation studies on novel
1,3-
diarylpropenones., Bioorg. Med. Chem. Lett., 9(2): 337-345.
Odularu A. T and Ajibade P. A (2019). Dithiocarbamates: Challenges, Control, and Approaches
to Excellent Yield, Characterization, and Their Biological Applications, Bioinorg. Chem.
Appl. Vol. 2019. https://doi.org/10.1155/2019/8260496
Onwudiwe D.C, Saiyed T.A and, Adeyemi J.O (2021).The structural chemistry of zinc(II) and
nickel(II) dithiocarbamate complexes, De Gruyter: Open Chemistry 19: 974–986
https://doi.org/10.1515/chem-2021-0080
Orvig C. and Abrams M.J (1999) Medicinal inorganic chemistry: introduction. Chem Rev 99(9):
2201–2204.
Sakurai H.A (2002). New Concept: The Use of Vanadium Complexes in the Treatment of
Diabetes Mellitus. The Chem Record, 2:237-48.
Dattatray S.S, Sakla A.P, and Shankaraiah N. (2020). An insight into medicinal attributes of
dithiocarbamates: Bird’s eye view.Elsevier: Bioorganic Chemistry, 105: 104346
Shaheen T. I, El-Naggar M. E, Hussein J. S, El-Bana M, et al., (2016). Antidiabetic
assessment; in vivo study of gold and core-shell silver-gold nanoparticles on
streptozotocin-induced diabetic rats, Elsevier: Biomedicine & Pharmacotherapy, 83: 865-
875
Vila, N.; Besada, P.; Brea, J.; Loza, M.I.; Terán, C (2022).Novel Phthalazin-1(2H)-One
Derivatives Displaying a Dithiocarbamate Moiety as Potential Anticancer Agents.
Molecules, 27, 8115. https://doi.org/10.3390/molecules27238115
Winum J. and Supuran C.T. (2015). Recent advances in the discovery of zinc-binding
motifs for the development of carbonic anhydrase inhibitors. J. Enzym. Inhib. Med.
Chem. 30:321–324. doi: 10.3109/14756366.2014.913587
Yoshikawa Y, Adachi Y and Sakurai H. (2006). A new type of orally active anti-diabetic Zn(II)-
dithiocarbamate
complex,
Pubmed:
life
science,
80(8):
759-766.
doi:
10.1016/j.lfs.2006.11.003. Epub 2006