Submit your papers Submit Now
International Peer-Reviewed Journal
For Enquiries: editor@iiardjournals.org
πŸ“„ Download Paper

Medicinal Importance of Dithiocarbamate Complexes: Potential Agents in Management of Diabetes

Abubakar Mustapha Ngoshe

Abstract

s Recent studies in bioinorganic chemistry and drug design have revealed the role of transition metal complexes as therapeutic compounds and diagnostic agent in medicine. Dithiocarbamates are organosulphur ligands which have the ability to form stable complexes with transition metals, and this chelating ability has been utilized in numerous applications. Their application as anticancer, antimicrobial, medical imaging and anti-inflammatory agents have been reported. According to World Health Organization (WHO) about 422 million people worldwide have diabetes, the majority living in low-and middle-income countries, and 1.5 million deaths are directly attributed to diabetes each year. Increasing resistance to available drugs and their associated side-effects have drawn wide attention towards designing alternative therapeutic strategies for control of hyperglycemia and oxidative stress The development of antidiabetic metal complexes replacing insulin injection to regulate sugar levels appears to be promising. The administration of vanadium and zinc in form of inorganic salt to control glucose level in the blood plasma have been achieved. This article reviews the applications of dithiocarbamate and its metal complexes as potential agent in the management of diabetes.

Keywords

dithiocarbamate complex diabetes medicine

References

Adeyemi J. O and Onwudiwe D. C (2020). The mechanisms of action involving dithiocarbamate complexes in biological systems, Inorganica Chimica Acta, 511: 119809 Adokoh C. K. (2020). Therapeutic potential of dithiocarbamate supported gold compounds. R oyal Soc.Chem Adv. 10, 2975-2988. DOI: 10.1039/C9RA09682E . Ajiboye T. O; Ajiboye, T. T; Marzouki, R. and Onwudiwe, D. C (2022). The versatility in the application of dithiocarbamates. I. Journ. Mol. Sci. 23(3) 1317. Doi:103390/ijms2303131 Al-Obaidy G.S , Ibraheem K.R , and Mesher M.F (2020). Metal complexes derived from dithiocarbamate ligand: formation, spectral characterization and biological activity. Syst Rev Pharm. 2020;11:360–368. 10.31838/srp.2020.6.57. Azam A , Raza M. A and Sumrra S.H (2018). Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review, Open Chemistry https://doi.org/10.1515/chem-2018-0118 Berry, D.J.; Torres Martin de Rosales, R.; Charoenphun, P.; and Blower, P.J. (2012). Dithiocarbamate complexes as radiopharmaceuticals for medical imaging. Mini Rev. Med. Chem.12: 1174–1183. Buac D, Schmitt S, Ventro G, Kona F.R and Dou Q. P (2012). Coordination base on dithiocarbamate compounds as a potent proteasome inhibitor in human cancer cells Mini- Rev. Med. Chem., 12: 1193–1201 Dugganaboyana G.K, Mukunda C.K, Jain A, Kantharaju R.M, Rani R. Nithya R.R, et al., (2023), Environmentally benign silver bio-nanomaterials as potent antioxidant, antibacterial, and antidiabetic agents: Green synthesis using Salacia oblonga root extract, Front. Chem. 11:1114109. doi: 10.3389/fchem.2023.1114109 El-Aarag, B.Y.A.; Kasai, T.; Zahran, M.A.H.; Zakhary, N.I.; Shigehiro, T.; Sekhar, S.C.; Agwa, H.S.; Mizutani, A.; Murakami, H.; Kakuta, H.; et al. (2014). In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int. Immunopharmacol. 21: 283–292. Elahabaadi E., Salarian A.A. and Nassireslami E. (2021). Design, Synthesis, and Molecular Docking of Novel Hybrids of Coumarin-Dithiocarbamate Alpha-Glucosidase Inhibitors Targeting Type 2 Diabetes Mellitus. Polycycl. Aromat. Compd: 1–11. doi: 10.1080/10406638.2021.1887295. Elberg, G.; He, Z.; Li, J.; Sekar, N. and Shechter, Y. (1997). Vanadate activates membranous nonreceptor protein tyrosine kinase in rat adipocytes. Diabetes, 46: 1684–1690. Fayyaz S, Shaikh M , Gasperini D , Nolan S.P , Smith A.D and MChoudhary M.I (2021). In vitro and in cellulo anti-diabetic activity of Au(I) and Au(III)-isothiourea complexes. Inorganic chemistry communications 3: 428 DOI:10.1016/j.inoche.2021.108666 Javed J. et al. (2016). Organotin(IV) derivatives of o-isobutyl carbonodithioate: Synthesis, spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological activities. Elsevier: Polyhedron, 104: 80-90. https://doi.org/10.1016/j.poly.2015.11.041 Kartina D., Wahab W., Ahmad A., Raya I and Irfandi R. (2019). Synthesis and Characterization of Zn(II)Leucin-Dithiocarbamate Complex and Their Potential as Anti-Tuberculosis Kurniawati M, and Mahdi C (2014). The effect of juice mango stem rind (Garcinia mangostana L.) to blood sugar levels and histological of pancreatic rats with the induction of streptozotocin. J Pure Appl Chem Res. 3(1):17. Maanvizhi S, Boppana T, Krishnan C and Gnanamani A (2014). Metal complexes in the management of diabetes mellitus: A new therapeutic strategy. International Journal of Pharmacy and Pharmaceutical Sciences 6(7):40-44 Mansouri-Torshizi H, Saeidifar M, Khosravi F Divsalar A, Saboury A. A and Hassani F (2011). DNA binding and antitumor activity of cis-diimineplatinum (II) and palladium(II) dithiocarbamate complexes., Bioinorg. Chem. Appl. 2011: 394506. Marzano C, Ronconi L, Chiara F, Giron M. C, Faustinelli I, Cristofori P, Trevisan A and Fregona D (2011). Int. J. Cancer, 2011, 129, 487–496 Mollazadeh M., Mohammadi-Khanaposhtani M., Valizadeh Y., Zonouzi A., Faramarzi M.A., Kiani M., Biglar M., Larijani B., Hamedifar H., Mahdavi M., et al. (2021). Novel Coumarin Containing Dithiocarbamate Derivatives as Potent alpha-Glucosidase Inhibitors for Management of Type 2 Diabetes. Med. Chem. 17:264–272. doi: 10.2174/1573406416666200826101205. Mukherjee,V. Kumar, A. K. Prasad, H. G. Raj, M. E. Bracke, C. E. Olsen, S. C. Jain and V. S. Parmar, (2001). Synthetic and biological activity evaluation studies on novel 1,3- diarylpropenones., Bioorg. Med. Chem. Lett., 9(2): 337-345. Odularu A. T and Ajibade P. A (2019). Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications, Bioinorg. Chem. Appl. Vol. 2019. https://doi.org/10.1155/2019/8260496 Onwudiwe D.C, Saiyed T.A and, Adeyemi J.O (2021).The structural chemistry of zinc(II) and nickel(II) dithiocarbamate complexes, De Gruyter: Open Chemistry 19: 974–986 https://doi.org/10.1515/chem-2021-0080 Orvig C. and Abrams M.J (1999) Medicinal inorganic chemistry: introduction. Chem Rev 99(9): 2201–2204. Sakurai H.A (2002). New Concept: The Use of Vanadium Complexes in the Treatment of Diabetes Mellitus. The Chem Record, 2:237-48. Dattatray S.S, Sakla A.P, and Shankaraiah N. (2020). An insight into medicinal attributes of dithiocarbamates: Bird’s eye view.Elsevier: Bioorganic Chemistry, 105: 104346 Shaheen T. I, El-Naggar M. E, Hussein J. S, El-Bana M, et al., (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats, Elsevier: Biomedicine & Pharmacotherapy, 83: 865- 875 Vila, N.; Besada, P.; Brea, J.; Loza, M.I.; TerΓ‘n, C (2022).Novel Phthalazin-1(2H)-One Derivatives Displaying a Dithiocarbamate Moiety as Potential Anticancer Agents. Molecules, 27, 8115. https://doi.org/10.3390/molecules27238115 Winum J. and Supuran C.T. (2015). Recent advances in the discovery of zinc-binding motifs for the development of carbonic anhydrase inhibitors. J. Enzym. Inhib. Med. Chem. 30:321–324. doi: 10.3109/14756366.2014.913587 Yoshikawa Y, Adachi Y and Sakurai H. (2006). A new type of orally active anti-diabetic Zn(II)- dithiocarbamate complex, Pubmed: life science, 80(8): 759-766. doi: 10.1016/j.lfs.2006.11.003. Epub 2006