INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )

E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 10 NO. 6 2024
DOI: 10.56201/ijccp.v10.no6.2024.pg17.39


Avocado Fruit Peel as a Source of Antidiabetic drugs: Evidence from Molecular Docking Studies and ADMET Profiling

Ibironke, A., Abdul-Hammed, M. Bello, M.O., Ismail, U.T. and Oladepo, M.A.


Abstract


Diabetes mellitus is a long-term metabolic disorder characterized by persistent hyperglycemia, which can lead to various health problem if left untreated. The quest for new, more effective, and safer anti-diabetic therapies continues, with a growing interest in natural compounds derived from medicinal plants. Among the promising natural sources, the avocado fruit has garnered attention for its potential antidiabetic properties. Avocado peel was earlier reported to have higher alpha- amylase inhibitory activities compared to other part of the fruit, thus suggested to possess antidiabetic properties. Reported phytochemicals isolated from Avocado peel were subjected to screening via molecular docking simulation using PyRx docking tool for visualization against alpha-amylase and human glucosidase enzyme and ADMET profiling. The docking scores with ADMET profiling reported three of the screened ligands: rutin (-9.4 kcal/mol), epigallocatechin gallate (-9.3 kcal/mol), and delphinidin-3-O-glucoside (-9.0 kcal/mol) as very effective potential drug candidates as compared to the conventional medications of diabetes, glipizide (-8.1 kcal/mol) and biguanide (-5.0 kcal/mol) against human glucosidase (2QMJ). Rutin (-7.9 kcal/mol) also exhibited excellent ADMET properties and was found to be more potent against alpha-amylase (3IJ7) compared to glipizide (-7.8 kcal/mol) and biguanide (-4.3 kcal/mol). These studies reveal the anti-diabetic activities of avocado peel to be linked to the presence of rutin, epigallocatechin gallate and delphinidin-3-O-glucoside and therefore recommends these compounds for additional in vivo animal studies and clinical trials to aid in the development and formulation of new anti- diabetic drugs.


keywords:

Diabetes mellitus, Alpha-amylase, Human glucosidase




[1] Roglic, G. (2016). WHO Global report on diabetes: A summary. International Journal of
Noncommunicable Diseases, 1(1), 3-8.
[2] Sapra, A., & Bhandari, P. (2023). Continuing Education Activity. Diabetes.
[3] Steyl, T. (2020). Satisfaction with quality of healthcare at primary healthcare settings:
Perspectives of patients with type 2 diabetes mellitus. South African Journal of
Physiotherapy, 76(1), 1-7.
[4] Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho,
N. H., ... & Makaroff, L. E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of
diabetes for 2015 and 2040. Diabetes research and clinical practice, 128, 40-50.
[5] Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., ... & Shan, P. F. (2020). Global, regional,
and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990
to 2025. Scientific reports, 10(1), 1-11.
[6] Standl, E., Khunti, K., Hansen, T. B., & Schnell, O. (2019). The global epidemics of diabetes
in the 21st century: Current situation and perspectives. European journal of preventive
cardiology, 26(2_suppl), 7-14.
[7] Ong, K. L., Stafford, L. K., McLaughlin, S. A., Boyko, E. J., Vollset, S. E., Smith, A. E., ... &
Brauer, M. (2023). Global, regional, and national burden of diabetes from 1990 to 2021, with
projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study
The Lancet, 402(10397), 203-234.
[8] Koye, D. N., Magliano, D. J., Nelson, R. G., & Pavkov, M. E. (2018). The global epidemiology
of diabetes and kidney disease. Advances in chronic kidney disease, 25(2), 121-132.
[9] Xiao-Ping, Y. E., Chun-Qing, S. O. N. G., Ping, Y. U. A. N., & Ren-Gang, M. A. O. (2010).
?-Glucosidase and ?-amylase inhibitory activity of common constituents from traditional Chinese
medicine used for diabetes mellitus. Chinese Journal of Natural Medicines, 8(5), 349-352.
[10] Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., ... & Shan, P. F. (2020). Global, regional,
and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990
to 2025. Scientific reports, 10(1), 1-11.
[11] Haguet, Q., Le Joubioux, F., Chavanelle, V., Groult, H., Schoonjans, N., Langhi, C., ... &
Maugard, T. (2023). Inhibitory potential of ?-amylase, ?-glucosidase, and pancreatic lipase by a
formulation of five plant extracts: TOTUM-63. International Journal of Molecular
Sciences, 24(4), 3652.
[12] Jiang, J., Fan, H., Zhou, J., Qin, J., Qin, Z., Chen, M., ... & Liu, X. (2024). In vitro inhibitory
effect of five natural sweeteners on ?-glucosidase and ?-amylase. Food & Function, 15(4), 2234-

[13] Abdul Basith Khan, M., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & Al
Kaabi, J. (2020). Epidemiology of type 2 diabetes—global burden of disease and forecasted
trends. Journal of epidemiology and global health, 10(1), 107-111.
[14] Arora, K., Tomar, P. C., & Mohan, V. (2021). Diabetic neuropathy: an insight on the transition
from synthetic drugs to herbal therapies. Journal of Diabetes & Metabolic Disorders, 20(2), 1773-
[15] Pang, G. M., Li, F. X., Yan, Y., Zhang, Y., Kong, L. L., Zhu, P., ... & Lu, C. (2019). Herbal
medicine in the treatment of patients with type 2 diabetes mellitus. Chinese medical
journal, 132(1), 78-85.
[16] Builders, P. F., Mohammed, B. B., & Sule, Y. Z. (2020). Preparation and evaluation of the
physicochemical and stability properties of three herbal tea blends derived from four native
herbs. Journal of Phytomedicine and Therapeutics, 19(2), 448-465.
[17] Golak-Siwulska, I., Ka?u?ewicz, A., Spi?ewski, T., Siwulski, M., & Sobieralski, K. (2018).
Bioactive
compounds
and
medicinal
properties
of
Oyster
mushrooms
(sp.). Folia
Horticulturae, 30(2), 191-201.
[18] Rahman, N., Tangkas, I. M., Rakhman, A., Sabang, S. M., & Bohari, B. (2022). Effect of
avocado (Persea americana Mill.) peel extract on the diabetic male white rats: preclinical
study. Open Access Macedonian Journal of Medical Sciences, 10(A), 415-418.
[19] Oboh, G., Isaac, A. T., Akinyemi, A. J., & Ajani, R. A. (2014). Inhibition of key enzymes
linked to type 2 diabetes and sodium nitroprusside induced lipid peroxidation in rats’ pancreas by
phenolic extracts of avocado pear leaves and fruit. International Journal of Biomedical Science:
IJBS, 10(3), 208.
[20] Ameer, K. (2016). Avocado as a major dietary source of antioxidants and its preventive role
in neurodegenerative diseases. The benefits of natural products for neurodegenerative diseases,
337-354.
[21] Jimenez, P., Garcia, P., Quitral, V., Vasquez, K., Parra-Ruiz, C., Reyes-Farias, M., ... & Soto-
Covasich, J. (2021). Pulp, leaf, peel and seed of avocado fruit: A review of bioactive compounds
and healthy benefits. Food Reviews International, 37(6), 619-655.
[22] Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a
review. Biophysical reviews, 9, 91-102.
[23] Gioia, D., Bertazzo, M., Recanatini, M., Masetti, M., & Cavalli, A. (2017). Dynamic docking:
a paradigm shift in computational drug discovery. Molecules, 22(11), 2029.
[24] Sam Paul, D., & Gautham, N. (2018). Protein–small molecule docking with receptor
flexibility in iMOLSDOCK. Journal of Computer-Aided Molecular Design, 32, 889-900.
[25] I. A. Guedes, F.S. Pereira & L.E. Dardenne, "Empirical scoring functions for structure-based
virtual screening: applications, critical aspects, and challenges", Frontiers in pharmacology 9
(2018): 1089.
[26] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., ... & Bolton, E. E. (2021). PubChem
in 2021: new data content and improved web interfaces. Nucleic acids research, 49(D1), D1388-
D1395.
[27] Lohohola, P. O., Mbala, B. M., Bambi, S. M. N., Mawete, D. T., Matondo, A., & Mvondo, J.
G. M. (2021). In silico ADME/T properties of quinine derivatives using SwissADME and pkCSM
webservers. International Journal of TROPICAL DISEASE & Health, 42(11), 1-12.



[28] Sim, L., Quezada-Calvillo, R., Sterchi, E. E., Nichols, B. L., & Rose, D. R. (2008). Human
intestinal maltase–glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of
inhibition and substrate specificity. Journal of Molecular Biology, 375(3), 782-792.
[29] Krentz, A. J., & Bailey, C. J. (2005). Oral antidiabetic agents: current role in type 2 diabetes
mellitus. Drugs, 65, 385-411.
[30] Zhang, R., Li, C., Williams, L. K., Rempel, B. P., Brayer, G. D., & Withers, S. G. (2009).
Directed “in situ” inhibitor elongation as a strategy to structurally characterize the covalent
glycosyl-enzyme intermediate of human pancreatic ?-amylase. Biochemistry, 48(45), 10752-
10764.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo