INTERNATIONAL JOURNAL OF APPLIED SCIENCES AND MATHEMATICAL THEORY (IJASMT )
E- ISSN 2489-009X
P- ISSN 2695-1908
VOL. 10 NO. 5 2024
DOI: 10.56201/ijasmt.v10.no5.2024.pg41.45
Samson O. Egege, Emmanuel Inyang and Bright O. Osu
A modified Binomial distribution is obtained from a generalized Binomial distribution for a special case ?< 0. In view of the approximation of simple Binomial distribution by Poisson distribution and the modified Binomial distribution approximation of this study by Poisson distribution,it is found to be more accurate than the simple Binomial approximation by Poisson distribution provided that ?+ ? is large.
A generalized Binomial,Poisson distribution, and binomial distribution
[1]Bright O. Osu , Samson O. Egege and Emmanuel j. Ekpeyong, “ Application
Of Generalized Binomial Distribution Model for Option Pricing, American
Journal of Applied Mathematics and Statistics ,5(2) pp 67-71 2017
[2]D.P Hu , Y.Q Cui and H. Yin ,“An improved Negative Binomial
Approximation for Negative Hypergeometric Distribution” Applied
Mechanics and Material Vol 427-429, pp 2549-2553 ,2013
[3] Dwass .M , “A generalized Binomial distribution” American
Statisticians Vol 33,89-87 1979
[4]Samson O.Egege,Bright O.Osu and Carlos Granados, “ Application of a limit
Function of negative hypergeometric distribution in option pricing” BISTUA
20(2) ,pp 43-47 2022
[5]Samson O.Egege , Bright O. Osu ,Kingsley Uchendu and Chiemela B.
Akachi, “ An improved Poisson approximation for the generalized Binomial
Distribution with Financial Application, Elixir International Journal Applied
Mathematics , Vol 121 pp51509-51519 , 2018
[6]Samson O. Egege , Bright O.Osu and Chigozie Chibuisi, “ An Improved
Poisson distribution and its Application in Option pricing ,Open Science
Journal of mathematics and Application 6(3) , pp15-23 2018
[7]Teerapabolarn .K., “An improved Binomial distribution to approximate the
Polya distribution” , International journal of Pure and Applied Mathematics
Vol 93, N0 .5 pp 629-632 ,2014
[8] Wongkasem P. and Teerapabolarn K. “On Approximating a Generalized
Binomial and Poisson Distribution” International Journal of Statistics and
Systems Vol 3 No. 2 pp113-124 2008