INTERNATIONAL JOURNAL OF CHEMISTRY AND CHEMICAL PROCESSES (IJCCP )

E-I SSN 2545-5265
P- ISSN 2695-1916
VOL. 10 NO. 5 2024
DOI: 10.56201/ijccp.v10.no5.2024.pg65.91


Quantitative Structural Activity Relationship (QSAR), Density Functional Theory (DFT), Molecular Docking, ADMET and Target Prediction Studies of Antimalarial activity of 1,2,4-triazolo[,-a]pyrazine derivatives against Resistant Plasmodium Falciparum

Olatunji Nathaniel Oladoye, Oladuji Tofunmi Emmanuel, Olatunde Abimbola Modupe, Asibor Yemisi Elizabeth and Semire Banjo


Abstract


Quantum Chemical Methods via Density Functional Theory (DFT), Quantitative Structure Activity Relation (QSAR) and docking methods were used to observed the anti- malaria activity of 1,2,4-triazolo[4,3-a] pyrazine derivatives. Many descriptors including dipole moment (DM), hydrogen bond donor (HBD), hydrogen bond acceptor (HBA), highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), hydrophobicity (LogP), energy gap (?Eg), chemical hardness (?), softness, and chemical potential (?) energies were calculated. All the five QSAR models were validated and the results showed that R-squared (R2), adjusted R² (R²adj), cross-validation (Q²), standard error of estimation (SEE) and mean absolute error (MAE) ranged from 0.9457 – 0.9902, 0.9225 – 0.9861, 0.8917 – 0.9789, 0.0687 – 0.1621, and 0.0676 – 0.01190, respectively, indicating that all the models have good predictability. However, models 1 (with R2 = 0.9902, R²adj = 0.9861, Q² = 0.9789, SEE = 0.0687 and MAE = 0.0676) was used to predict new set of triazolo[4,3-?] pyrazine due to its statistical robustness. The docking results of the six predicted triazolo[4,3- ?] pyrazine compounds (NLs) and the standard drugs (Artesunate, Puromycin, and Pyrimethamine) against Plasmodium falciparum (PfMyoA) with PDB ID 6YCX, 6YCY, and 6YCZ revealed the binding affinities range of -7.80 to -9.30 kcal/mol for 6YCX, -7.60 to -9.30 kcal/mol for 6YCY and -7.90 to -9.00 kcal/mol for 6YCZ. The binding affinities of Artesunate, Puromycin and Pyrimethamine are -7.70, -7.90 and -6.60 kcal/mol for 6YCX, -7.50, -8.20 and -6.40 kcal/mol for 6YCY, -8.00, -8.30 and -6.70 kcal/mol, respectively, indicating that NL7, NL8, NL9, NL10 and NL18 have outstanding binding affinity than the selected drugs. The ADMET profiles, the computational QSAR study together with the molecular docking has actually provided a valuable approach for researchers to developed model, making it possible to p


keywords:

1,2,4-triazolo[4,3-a] pyrazine derivatives, DFT-QSAR, Molecular docking


References:


1
WHO
(2021)? World
Malaria
Report
Switzerland:
World
Health
Organization. ISBN 978-92-4- 004049-6.
2 Caminade C, Kovats S, Rocklov J, (2014). “Impact of climate change on global malaria
distribution.”Proc Natl Acad Sci U S A,
111(9):3286–3291.
3 Mace, K. E., Arguin, P. M. Lucchi, N. W Tan, K. R. (2019). Surveill. Summ. 68(5), 1.
4 Kondilis E, Giannakopoulos S, Gavana M, Ierodiakonou I, Waitzkin H, Benos A. (2013)
Economic crisis, restrictive policies, and the population’s health and health care: the
Greek case. Am J Public Health;103(6):973–979. doi:10.2105/AJPH.2012.301126
5 Plucinski MM, Talundzic E, Morton L, (2015). Efficacy of artemether-lumefantrine and
dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in
Zaire and Uíge provinces, Angola. Antimicrobial Agents Chemother.;59(1):437–443.
6 Reyburn H. (2010). New WHO guidelines for the treatment of malaria. BMJ. 340:c2637. doi:
10.1136/bmj.c2637.
7 Ramchander, M., Setha, G., Deetic, B. and Kalyani, S. (2015). Synthesis and Biological
Activities of pyrimidines. A review international journal of pyarmTech Research, 8
(6);88-93.
8 Alyar, S.N. Karacan, J. (2009) Enzyme Inhibiton. Med. Chem, 24, 4, 986.
https://doi.org/10.1080/14756360802561220.
9 Sondhi, S.M., Dinodia, M., Rani, R. Shukla, R., and Raghubir, R. (2009). Synthesis, anti-
inflammatory and analgesic activity of some pyrimidine derivatives, indiaan journal of
chemistry B, 48(2); 273-281.
10 Wood, P.M., Woo, L.W.L., Labrosse J., Trusselle, M.N., Abbate, S. (2008). New
Trisubstituted 1,2,4-Triazole Derivates as Potent Ghrelien Receptor Antagonists. J Med
Chem., 51: 42236-42338
11 Mavrova,A.T., Wesselinova, D., Tsenov,Y.A., Pavletta, d. (2009) Synthesis, cyctotoxicity
and effects 0f some 1,2,4- Triazole and 1,3,4- thiadiazole derivatives on
immunocompetent cells. Eur v J.Med .Chem.,44:63-69
12 Sondhi, S.M., Jani, S., Dinodia, M., Shukla, R., and Raghubir, R, (2007). One pot Synthesis
of pyrimidine and bispyrimidine derivatives and their evaluation for anti-inflammatory
and analgesic activities. Bio-organic and medicinal chemistry, 15(10);3334-3344
13 Huighes, J. D.; Blagg, J.; Price, D. A.; Bailey, S.; Decrescenzo, G. A.; Devraj, R. V.;
Ellsworth, E.; Fobian, Y. M.; Gibbs, M. E.; Gilles, R. W.; Greene, N.; Huang, E.;
Krieger-Burke, T.; Loesel, J.; Wager, T.; Whiteley, L.; Zhang, Y. (2022)
Physicochemical drug properties associated with in vivo toxicological outcomes.
Bioorg. Med. Chem. Lett 18, 4872?4875
14 Ferreira SB, Sodero ACR, Cardoso MFC, et al.2010. Synthesis, biological activity, and
molecular modeling studies of 1 -1,2,3-triazole derivatives of carbohydrates as alfa-
glucosidases inhibitors. J. Med. Chem 2010; 53:2364-75
15 Open-Source Malaria Project Wiki; A new triazolo-pyrazine series for OSM series 4.
Availableonline:
http://malaria.ourexperiment.org/osdd_malaria_shared/7949/A_New_Triazolopyrazine
_Series_for_OSM__Series_4.html (accessed on 20 January 2021)
16 Johnson, D.J.G.; Jenkin, I.D.; Huxley, C.; Coster, M.J.; Lum, K.Y.; Wihite, J.M.; Avery,
V.M.; DAvis, R.A (2021). Synthesis of New Triazolo pyridazine Antimalarial
compounds. Molecules,26, 2421.https://doi.org/10.3390/molecules26092421
17 Semire, B., & Odunola, O. A. (2019). Density Functional Theory (DFT) Study on ?, ?-Bis
(2-benzothiophen-1-yl)-4H-cyclopenta [2, 1-b, 3; 4-b?] dithiophene Derivatives for
Optoelectronic Devices. A A, 1(2), 3.
18 Semire B.; Oyebamiji, A.; Ahmad, M. (2012): Theoretical Study on structure and
Elctronic Properties of 2,5- Bis [4-N, N- Diethylaminostyl] Thiophene and its furan
and pyrrole Derivatives Using Density Functional Theory. Pakistan Journal of
Chemistry, 2(4), 166-173
19 Rivera-Delgado, E., Xin, A., & Von Recum, H. A. (2019). Using QSARs for predictions in
drug
delivery.
bioRxiv
(Cold
Spring
Harbor
Laboratory).
https://doi.org/10.1101/727172
20 Oyebamiji Abel Kolawole and Semire Banjo (2016). DFT-QSAR model and docking
studies of antiliver cancer (HEPG-2) activities of 1, 4-Diydropyridine based derivatives,
Cancer Biology, 6(2):69-78. Impact Factor: 0.654 | Publisher: Marsland Press.
Website: http://www.sciencepub.net
21 Abdullahi, M., & Adeniji, S. E. (2020). In-silico molecular docking and
ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as
anti-tubercular agents. Chemistry Africa, 3(4), 989-1000.
22
Veerasamy,
R.,
Rajak,
H.,
jain,
A.,
Sivadasan,
S.,
Varghese,
CP.,
Agrawal,R.K.,(2011).Validation of qsar models-strategies and importance. Int.j. Drug
Des. Discov.3,511-519.
23 Ameji, J. P., Uzairu, A., Shallangwa, G. A., & Uba, S. (2023). Design, pharmacokinetic
profiling, and assessment of kinetic and thermodynamic stability of novel anti-
Salmonella typhi imidazole analogues. Bulletin of the National Research Centre, 47(1),
1-12.
24 Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A. R., & Hatamjafari, F. (2021).
Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor
studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-
phenylbenzo [d] thiazole-2 (3 H)-imine and its para-substituted derivatives: Solvent and
substituent effects. Journal of Chemical Research, 45(1-2), 147-158.
25 Adegbola P.I., Semire B., Fadahunsi O.S. and Adegoke A.E., (2021) Molecular docking
and ADMET studies of Allium cepa, Azadirachta indica and Xylopia aethiopica isolates
as potential anti-viral drugs for Covid-19. VirusDisease. https://doi.org/10.1007/s13337-
021-00682-7
26 Gualdani R, Tadini-Buoninsegni F, Roselli M, Defrenza I, Contino M, Colabufo NA,
Lentini G. (2015) Inhibition of hERG potassium channel by the antiarrhythmic agent
mexiletine and its metabolite m-hydroxymexiletine. Pharmacol Res Perspect; 3(5): -
Doi: 10.1002/prp2.160.


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo