International Journal of Engineering and Modern Technology (IJEMT )
E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 10 NO. 10 2024
DOI: 10.56201/ijemt.v10.no10.2024.pg17.28
Adebayo, Stephen O. Adelaja, Oluwaseun A. Babatola, J. O. Udorah, Daniel O.
Addressing the environmental concerns associated with non-biodegradable plastics, this study focuses on the development of biodegradable polypropylene-based composites using chitosan nanoparticles and conductive fillers. Initially, five samples of polypropylene-chitosan composites were prepared: a control sample of neat polypropylene (AO) and four samples containing varying concentrations of chitosan nanoparticles—10%, 20%, 30%, and 40% (A1, A2, A3, and A4, respectively). A 90-day soil biodegradation test was conducted to determine the optimal chitosan content for biodegradability. The sample containing 30% chitosan nanoparticles (A3) exhibited the highest degradation rate, leading to its selection for further experimentation. Subsequent tests examined the effect of conductive fillers—activated carbon and graphene—on the biodegradability of the optimized A3 sample. Nine new composites were formulated by adding activated carbon and graphene at concentrations of 5%, 10%, 15%, and 20%. Results showed that the incorporation of graphene significantly enhanced biodegradability, with the sample containing 20% graphene (C4) achieving the greatest weight reduction, indicating a near-complete breakdown by the end of the 90-day period. While activated carbon also improved degradation, its impact was less pronounced compared to graphene, particularly at higher concentrations. These findings suggest that the combination of 30% chitosan nanoparticles with 20% graphene offers an optimized biodegradable composite, balancing environmental degradation with material stability. This study concludes that graphene, particularly at higher concentrations, is a promising additive for optimizing the biodegradability of polypropylene composites, offering a pathway to environmentally friendly alternatives to conventional plastics.
Biodegradable composites; Polypropylene-chitosan blend; Activated Carbon;
[1]. Abanti, S. (2018). Utilization of waste plastic-wrappers for the production of potential
activated carbon. Academia, 23:1-14.
[2]. Abdel-Hafez, S. I. I., El-Saadony, M. T., and Desoky, E.-S. M. (2021). Enhancement of
microbial degradation of polymers using natural additives. Journal of Environmental `
Management, 289, 112513.
[3]. Abdelwahab, M. A., Misra, M., and Mohanty, A. K. (2013). Influence of activated carbon
fillers on the biodegradability of composites. Polymer Degradation and Stability, 98(5),
994-1001.
[4]. Acik, G., Altinkok C., Tasdelen M. (2018). Synthesis and Characterization of Polypropylne-
poly(lactide) copolymers by cuAAC click chemistry. J Polym Si Part A Polym Chem
56:2595-2601.
[5]. Acik, G., Altinkok, C., and Acik, B. (2022). Biodegradable and antibacterial chlorinated
polypropylene/chitosan based composite films for bacterial applications. Polym. Bull.,
79:9997-1011. Https://doi.org/10.1007/s00289-021-04064-3.
[6]. Adelaja, O. (2015). Bioremediation of petroleum hydrocarbons using microbial fuel cells. A
PhD
thesis
submitted
at
the
University
of
Westminster.
Accessed
from
(http://westminsterresearch.wmin.ac.uk/).
[7]. Adelaja, O. A., and Babaniyi, O. (2020). Evaluation of the biodegradability of polymer
composites in soil environments. Environmental Science and Pollution Research, 27(12),
14567-14575. DOI: 10.1007/s11356-020-08745-3.
[8]. Adelaja, O.A., Udorah, D. O., Babaniyi, B.R., Babatola, J.O. (2024). Development of PET?AC
Composite: Effect of Preparation Method on the Mechanical and Water
Absorption,
Behaviours. Springer: Chemistry Africa, 1-16. https://doi.org/10.1007/s42250-023-
00852-8).
[9]. Benltoufa, S., Miles W. Trad, M., Slama R., Fayala F. (2020). Chitosan hydrogel-coated
cellulosic fabric for medical end-use: antibacterial properties basic mechanical and comfort
properties. Carbohydrate Polym 227:115352.
[10]. Daramola OO, Akintayo OS, Adewole TA, Talabi HK (2017). Mechanical properties and
water absorption behaviour of polyester/ soil-retted banana fibre (srbf) composites. Ann
Faculty Eng Hunedoara: Int J Eng, Tome 15(1):183–190.
[11]. Divya, K., and Jisha, M. S. (2018). Biodegradable composites: A review on the properties
and
applications. Journal of Polymers and the Environment, 26(4), 1234-1245. DOI:
10.1007/s10924-018-1165-5.
[12]. Geyer, R., Jambeck, J. R., and Law, K. L. (2017). Production, use, and fate of all plastics
ever
made. Science Advances, 3(7), e1700782.
[13]. Gopi, S., Suresh, S., and Kumar, S. (2017). Chitosan-based biodegradable composites: A
review.
International Journal of Biological Macromolecules, 104, 1234-1245. DOI:
10.1016/j.ijbiomac.2017.06.045
[14]. Gozutok, M., Basar A. and Sasmazel H. (2018). Development of bacterial composites
electrospin
chitosan-coated Polypropylene materials. J Nanosci Nanotehnology
18:2881-2891.
[15]. Hossain, M. T., Shahid, M. A., Mahmud, N., Habib, A., Rana, M. M., Khan, S. A., and
Hossain, M. D. (2024). Research and application of propylene: A review. Discover Nano
19 (2):1-
https://doi,org/10.1186/s1171-023-03952-z
[16]. Huang, J., Liu, C., and Zhou, P. (2022). Conductive fillers in polymer composites:
Biodegradation potential of graphene. Materials Chemistry Advances, 20(3), 320-335.
[17]. Hussein, L. Mostafa, M.H., Darwish, M., Abdaleem, A. H., and Elsawy, M. A (2022).
Influence of the chemically prepared chitosan/ZnO nanocomposite on the biodegradability,
mechanical and thermal properties of polypropylene. Polymer-Plastico Technology and
materials, 61(2): 131-144.
[18]. Jain, K., Tiwari, R. R., and Tiwari, A. (2019). Recent trends in conductive filler reinforced
biodegradable polymers. Materials Science and Engineering B, 246, 114381.
[19]. Kim, M. N., Lee, S. Y., and Kim, J. (2014). Biodegradation of polypropylene by the
application of conductive fillers. Journal of Applied Polymer Science, 132(21), 42015.
[20]. Kumar, A., Singh, R. P., and Gupta, A. (2018). Polypropylene and its composites: A review
on the biodegradability and environmental impact. Journal of Cleaner Production, 172,
1234-1245. DOI: 10.1016/j.jclepro.2017.10.195.
[21]. Martinez-Camach, A., Cortez-Rocha, M., Ezquerra-Brauer, J., Graciano-Verdigo, A.,
Rodriguez-
Felix, F., Castillo-Ortega, M., Yepiz-Gomez, M., and Plascencia-Jatomea,
M. (2010).
Chitosan composite films: thermal, structural, mechanical and antifungal
properties. Carbohyd. Polym 82: 305-315
[22]. Miller, A., and Khan, R. (2017). Surface area and microbial colonization in activated
carbon-enhanced composites. Composite Science and Technology, 68(8), 545-558.
[23] Nguyen, M., and Lee, S. (2021). Microbial stabilization and degradation patterns in
conductive-filled composites. Journal of Applied Environmental Microbiology, 9(4),
412-420.
[24]. Park, D. (2020). Enhancing microbial degradation of polymers through nanomaterial
integration.
Environmental Science and Technology, 54(11), 6785-6793.
[25]. Park, D., and Lee, Y. (2023). The role of graphene in the environmental degradation of
polymers. Journal of Environmental Materials Science, 29(1), 123-139.
[26]. Rahman, A., Patel, D., and Srinivasan, R. (2021). Graphene dispersibility and microbial
interaction in biodegradable composites. Biopolymer Research Communications, 25(5),
537-549.
[27]. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer
Science, 31(7), 603-632.
[28]. Samariah, P. and Masson, M (2017). Antimicrobial chitosan and chitosan derivative: A
review of the structure activity relationship. Biomacromolecules, 18(11):3846-3868.
https://doi.org/10.1021/acs.biomac.7b01058.
[29]. Shah, A. A., Hasan, F., and Ahsan, M. (2008). Biodegradation of plastics: A
comprehensive review. Biotechnology Advances, 26(3), 246-265.
[30]. Silva, A. M., Ferreira, A. M., and Santos, J. (2021). Microbial degradation of chitosan and
its derivatives: A review. Applied Microbiology and Biotechnology, 105(2), 1234-1245.
DOI: 10.1007/s00253-020-10745-6.
[31]. Tara, A., Bencharki, M., Gainvors-Claisse, A., Berzin, F., Jbara, O., Rondot, S. (2024).
Investigating Degradation in Extrusion-Processed Bio-Based Composites Enhanced with
Clay Nanofillers. Biomass, 4, 658–670. https://doi.org/10.3390/biomass4030036
[32]. Udorah, D. O., Adelaja, O. A., Babatola, J. O. (2023). Investigating the Water Absorption
Behavior of Biocomposites containing Activated Carbon And Plastic Waste For Fuel Cell
Application. International Journal of Research and Publication, 2(5):238-247.
[33]. Wang, M., and Zhang, Y. (2021). Balancing durability and biodegradability in composite
materials. Green Polymer Engineering, 14(9), 899-911.
[34]. Wang, Y., Zhang, Y., and Liu, Y. (2011). The effect of chitosan on the biodegradation of
polypropylene composites. Journal of Applied Polymer Science, 121(6), 3456-3463.
DOI: 10.1002/app.33999.
[35]. Xu, Z., and Wang, Y. (2018). Polypropylene biodegradation in environmental contexts:
Challenges and advances. Environmental Materials Journal, 22(4), 301-314.
[36]. Xu, Z., Liu, Y., and Wang, X. (2018). Impact of graphene on the biodegradability of
synthetic polymers. Journal of Environmental Polymer Degradation, 26(8), 1275-1283.
[37]. Zhang, L., Nguyen, M., and Lee, S. (2020). Effects of activated carbon filler concentration
on the structural stability and degradation of composites. Polymer Degradation Insights,
11(6), 675-690.
[38]. Zheng, Y., Yanful, E. K., and Bassi, A. S. (2005). A review of plastic waste degradation.
CriticalReviews in Biotechnology, 25(4), 243-250.