JOURNAL OF BIOLOGY AND GENETIC RESEARCH (JBGR )

E-ISSN 2545-5710
P-ISSN 2695-222X
VOL. 10 NO. 2 2024
DOI: 10.56201/jbgr.v10.no2.2024.pg127.132


The Roles of Suppressor of Cytokine Signaling 7 SOCS7) Gene in Bombyx mori (Silkworm) against Bombyx mori NucleopolyhedroVirus (BmNPV) infection: A Review

Idris I, Abbah D, Abba M, Ibrahim ZY, Umar AN, Buhari A, Sani A, Adam SS and Ali M


Abstract


Bombyx mori silkworm belongs to the family of Bombycidae and the order Lepidoptera which are known to have originated and domesticated in China about 5,000 years ago. Silkworm is also a good model organism for production of recombinant proteins and the study of insect immunology. However, its populations are severely threatened by BmNPV, a virus that causes high mortality rates and reduced silk yield. B. mori nucleopolyhedrovirus (BmNPV) is a primary silkworm pathogen, and always causes serious economic losses. The paper review, the current understanding of silkworm suppressor of cytokine signal 7 (SOCS7) and its role in antiviral immunity against BmNPV infection, highlighting the insights gained from the silkworm infection model and functional analysis of SOCS7.


keywords:

Bombyx mori, B. mori nucleopolyhedrovirus (BmNPV), silkworm, SOCS7


References:


Andoh, V., Guan, H., Ma, L., Zhao, W., Li, L., and Wu, G. (2021). Evaluation of biological
effects 564 of three neodymium compounds on silkworm, Bombyx mori. J. Rare Earths
39, 1289–1299. doi: 10.1016/j.jre.2020.10.010
Baci, G.-M., Cucu, A.-A., Giurgiu, A.-I., Musca, A.-S., Bagameri, L., Moise, A. R., et al. (2022).
Advances in editing silkworms (Bombyx mori) genome by using the CRISPR-Cas
system. Insects 13:28. doi: 10.3390/insects13010028
Blissard, G. W., and Theilmann, D. A. (2018). Baculovirus entry and egress from insect cells.
Annu. Rev. Virol. 5, 113–139. doi: 10.1146/annurev-virology-092917-043356
Chen SQ, Hou CX, Bi HL, Wang YQ, Xu J, Li MW, et al. (2017). Transgenic Clustered
Regularly Interspaced Short Palindromic Repeat/Cas9-Mediated Viral Gene Targeting for
Antiviral Therapy of Bombyx mori Nucleopolyhedrovirus. J Virol (2017) 91(8):e02465-
doi:10.1128/JVI.02465-16
Chen TT, Tan LR, Hu N, Dong ZQ, Hu ZG, Jiang YM, (2018). C-lysozyme contributes to
antiviral immunity in Bombyx mori against nucleopolyhedrovirus infection. J Insect
Physiol (2018) 108:54–60. doi:10.1016/j.jinsphys.2018.05.005
Fan, Y.-X., Andoh, V., and Chen, L. (2023). Multi-omics study and ncRNA regulation of anti-
BmNPV in silkworms, Bombyx mori: an update. Front. Microbiol. 14:1123448. doi:
10.3389/fmicb.2023.1123448
Goldsmith, M. R., Shimada, T., and Abe, H. (2005). The genetics and genomics of the silkworm,
Bombyx mori. Annu. Rev. Entomol. 50, 71–100. doi: 10.1146/annurev.ento.50.071803.130456
Hu, D., Xue, S., Zhao, C., Wei, M., Yan, H., Quan, Y., et al. (2018). Comprehensive profiling of
lysine Acetylome in Baculovirus infected silkworm (Bombyx mori) cells. Proteomics
18:1700133. doi: 10.1002/pmic.201700133
Jiang, L., and Xia, Q. Y. (2014). The progress and future of enhancing antiviral capacity by
transgenic technology in the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 48, 1–7.
doi: 10.1016/j.ibmb.2014.02.003
Jiang, L. (2021). Insights into the antiviral pathways of the silkworm Bombyx mori. Front.
Immunol. 12:639092. doi: 10.3389/fimmu.2021.639092
Jiang, L., Wang, G., Cheng, T., Yang, Q., Jin, S., Lu, G., et al. (2012). Resistance to Bombyx
mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in
transgenic silkworms. Arch. Virol. 157, 1323–1328. doi: 10.1007/s00705-012-1309-8
Kaito T. et al., (2011). Silkworms as a model for studying fungal infections, Fungal Biology,
vol. 115, no. 10, pp. 931-938,
Kasoju, N., and Bora, U. (2012). Silk fibroin in tissue engineering. Adv. Healthc. Mater. 1, 393–
doi: 10.1002/adhm.201200097
Khan M. N. F. et al., (2017) Silkworm as a model animal for studying antimicrobial agents,
Journal of Applied Microbiology, vol. 123, no. 3, pp. 541-551,
Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., and Goettel, M. S.
(2015). Insect pathogens as biological control agents: back to the future. J. Invertebr.
Pathol. 132, 1–41. doi: 10.1016/j.jip.2015.07.009
Lee Y. et al., (2018). High-throughput screening of bacterial pathogens using silkworms,
Scientific Reports, vol. 8, no. 1, p. 15771,
Li, T., Xia, Y., Xu, X., Wei, G., and Wang, L. (2020). Functional analysis of Dicer-2 gene in
Bombyx mori resistance to BmNPV virus. Arch. Insect Biochem. Physiol. 105:e21724. doi:
10.1002/arch.21724
Liu, Y., Yin, G., Surapisitchat, J., Berk, B. C., and Min, W. (2001). Laminar flow inhibits TNF-
induced ASK1 activation by preventing dissociation of ASK1 from its inhibitor 14-3-3. J.
Clin. Invest. 107, 917–923. doi: 10.1172/JCI11947
Lu, P., Pan, Y., Yang, Y., Zhu, F., Li, C., Guo, Z., et al. (2018). Discovery of anti-viral
molecules and their vital functions in Bombyx mori. J. Invertebr. Pathol. 154, 12–18. doi:
10.1016/j.jip.2018.02.012
Qi, Y., Wang, H., Wei, K., Yang, Y., Zheng, R.-Y., Kim, I. S., et al. (2017). A review of
structure construction of silk fibroin biomaterials from single structures to multi-level
structures. Int. J. Mol. Sci. 18:237. doi: 10.3390/ijms18030237
Qian, H., Li, G., Zhao, G., Liu, M., and Xu, A. (2020). Metabolic characterisation of the midgut
of Bombyx mori varieties after BmNPV infection using GC-MS-based metabolite
profiling. Int. J. Mol. Sci. 21:4707. doi: 10.3390/ijms21134707
Sajjan, D. B., and Hinchigeri, S. B. (2016). Structural organization of baculovirus occlusion
bodies and protective role of multilayered polyhedron envelope protein. Food Environ.
Virol. 8, 86–100. doi: 10.1007/s12560-016-9227-7
Shao, Q., Yang, B., Xu, Q., Li, X., Lu, Z., Wang, C., et al. (2012). Hindgut innate immunity and
regulation of fecal microbiota through melanization in insects. J. Biol. Chem. 287, 14270–
doi: 10.1074/jbc.M112.354548
Shi, X., Zhang, Y., Zhu, T., Li, N., Sun, S., Zhu, M., et al. (2021). Response to Bombyx mori
nucleopolyhedrovirus infection in silkworm: gut metabolites and microbiota. Dev. Comp.
Immunol. 125:104227. doi: 10.1016/j.dci.2021.104227
Tsioris, K., Raja, W. K., Pritchard, E. M., Panilaitis, B., Kaplan, D. L., and Omenetto, F. G.
(2012). Fabrication of silk microneedles for controlled-release drug delivery. Adv. Funct.
Mater. 22, 330–335. doi: 10.1002/adfm.201102012
Xia Q, Li S, Feng Q. Advances in silkworm studies accelerated by the genome sequencing of
Bombyx mori. Annu Rev Entomol (2014) 59:513–36. doi: 10.1146/annurev-ento-011613-
Xu, K., Li, F., Ma, L., Wang, B., Zhang, H., Ni, M., Hong, F., Shen, W., Li, B., (2015).
Mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance by titanium
dioxide nanoparticles in silkworm. PLOS ONE 10, e0118222
Van Oers, M. M., Pijlman, G. P., and Vlak, J. M. (2015). Thirty years of baculovirus-insect cell
protein expression: from dark horse to mainstream technology. J. Gen. Virol. 96, 6–23. doi:
10.1099/vir.0.067108-0
Wang et al. (2020). Cloning and expression analysis of SOCS7 from silkworm, Bombyx mori.
Journal of Insect Science, 20(3), 537-545.
Wang, X. Y., et al. (2021). The validation of the role of several genes related to Bombyx mori
nucleopolyhedrovirus infection in vivo. Arch. Insect Biochem. Physiol. 106:e21762. doi:
10.1002/arch.21762 (Page 12).
Zhang et al. (2019). Expression profiling of SOCS7 in response to BmNPV infection in
silkworms. Journal of Asia-Pacific Entomology, 22(2), 247-253.
Zhao, S., Chen, G., Kong, X., Chen, N., and Wu, X. (2022). BmNPV p35 reduces the
accumulation of virus-derived siRNAs and hinders the function of siRNAs to facilitate
viral infection. Front. Immunol. 13:845268. doi: 10.3389/fimmu.2022.845268


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo