RESEARCH JOURNAL OF PURE SCIENCE AND TECHNOLOGY (RJPST )

E-ISSN 2579-0536
P-ISSN 2695-2696
VOL. 7 NO. 5 2024
DOI: 10.56201/rjpst.v7.no5.2024.pg50.61


Hydrogen Generation, Migration and Accumulation in Rock: A Comprehensive Review

Ayodeji Kayode Ogundana


Abstract


In the pursuit of clean and sustainable energy solutions, the attention has shifted towards hydrogen, an emerging contender with vast potential. This comprehensive review delves into the promise of geological formations as reservoirs for hydrogen, offering insights into the intricate processes governing its generation, migration, and accumulation. The article highlights the significance of this phenomenon within the renewable energy landscape, emphasizing its pivotal role in curtailing greenhouse gas emissions and fortifying energy security. This multidisciplinary analysis traverses the realms of geology, renewable energy, environmental science, and geography, providing a holistic comprehension of rocks' central role in the storage and release of hydrogen, thus contributing to the global endeavor to combat climate change and embrace sustainable energy sources.


keywords:

Geological formations, hydrogen storage, renewable energy, environmental


References:


[1] F. Xu, H. Hajibeygi, and L. J. Sluys, “Adaptive multiscale extended finite element
method (MS-XFEM) for the simulation of multiple fractures propagation in geological
formations,” J ComputPhys, vol. 486, 2023, doi: 10.1016/j.jcp.2023.112114.
[2] S. A. Samuel, L. A. Oparaku, and I. N. Itodo, “Physico–chemical and mechanical
properties of soils of owukpa lower coal measure geological formation of anambra basin-
Nigeria,” Int J EngAdv Technol, vol. 8, no. 3, 2019.
[3] J. F. Carneiro, C. R. Matos, and S. van Gessel, “Opportunities for large-scale energy
storage in geological formations in mainland Portugal,” Renewable and Sustainable Energy
Reviews, vol. 99, 2019, doi: 10.1016/j.rser.2018.09.036.
[4] D. J. Ren, S. L. Shen, W. C. Cheng, N. Zhang, and Z. F. Wang, “Geological formation
and geo-hazards during subway construction in Guangzhou,” Environ Earth Sci, vol. 75, no.
11, 2016, doi: 10.1007/s12665-016-5710-6.
[5] N. Al Basha, A. Eplényi, and G. Sándor, “Inspirative Geology - The Influence of
Natural Geological Formations and Patterns on Contemporary Landscape Design,” Landscape
Architecture and Art, vol. 17, no. 17, 2020, doi: 10.22616/j.landarchart.2020.17.05.
[6] G. M. Moulatletet al., “The role of topographic-derived hydrological variables in
explaining plant species distributions in Amazonia,” Acta Amazon, vol. 52, no. 3, 2022, doi:
10.1590/1809-4392202103682.
[7] M. HosseiniMehr, J. P. Tomala, C. Vuik, M. Al Kobaisi, and H. Hajibeygi, “Projection-
based embedded discrete fracture model (pEDFM) for flow and heat transfer in real-field
geological formations with hexahedral corner-point grids,” Adv Water Resour, vol. 159, 2022,
doi: 10.1016/j.advwatres.2021.104091.
[8] B. Berkowitz, O. Bour, P. Davy, and N. Odling, “Scaling of fracture connectivity in
geological formations,” Geophys Res Lett, vol. 27, no. 14, 2000, doi: 10.1029/1999GL011241.
[9] Q. Meng and X. Jiang, “Numerical analyses of the solubility trapping of CO2 storage
in geological formations,” Appl Energy, vol. 130, 2014, doi: 10.1016/j.apenergy.2014.01.037.
[10] R. Pomar-Castromonte, E. Ingol-Blanco, J. Santos, and S. Santa-Cruz, “Analytical and
numerical modeling for the assessment of CO2 storage in the Pariñas geological formation -
Talara, Peru,” International Journal of Greenhouse Gas Control, vol. 110, 2021, doi:
10.1016/j.ijggc.2021.103446.
[11] O. R. M. Kenmoe, I. Y. Bomeni, W. T. Hyoumbi, F. Ngapgue, and A. S. L. Wouatong,
“Petrographical and geomechanical assessment of Widikum and its surroundings’ geological
formations (North-West Cameroon) as construction materials,” SN ApplSci, vol. 2, no. 12,
2020, doi: 10.1007/s42452-020-03633-x.
[12] E. K. Appiah-Adjei and I. Osei-Nuamah, “Hydrogeological evaluation of geological
formations in Ashanti Region, Ghana,” Journal of Science and Technology (Ghana), vol. 37,
no. 1, 2018, doi: 10.4314/just.v37i1.4.
[13] F. Osselin, M. Pichavant, R. Champallier, M. Ulrich, and H. Raimbourg, “Reactive
transport experiments of coupled carbonation and serpentinization in a natural serpentinite.
Implication for hydrogen production and carbon geological storage,” GeochimCosmochimActa, vol. 318, 2022, doi: 10.1016/j.gca.2021.11.039.
[14] R. Mosser-Ruck et al., “Serpentinization and H2 production during an iron-clay
interaction experiment at 90C under low CO2 pressure,” Appl Clay Sci, vol. 191, 2020, doi:
10.1016/j.clay.2020.105609.
[15] J. P?ikryl, A. Stefánsson, and C. R. Pearce, “Tracing olivine carbonation and
serpentinization in CO2-rich fluids via magnesium exchange and isotopic fractionation,”
GeochimCosmochimActa, vol. 243, 2018, doi: 10.1016/j.gca.2018.09.022.
[16] R. Saladino, G. Botta, B. M. Bizzarri, E. Di Mauro, and J. M. Garcia Ruiz, “A Global
Scale Scenario for Prebiotic Chemistry: Silica-Based Self-Assembled Mineral Structures and
Formamide,” Biochemistry, vol. 55, no. 19, 2016, doi: 10.1021/acs.biochem.6b00255.
[17] V. Zgonnik, V. Beaumont, N. Larin, D. Pillot, and E. Deville, “Diffused flow of
molecular hydrogen through the Western Hajar mountains, Northern Oman,” Arabian Journal
of Geosciences, vol. 12, no. 3, 2019, doi: 10.1007/s12517-019-4242-2.
[18] Y. Li, C. Cao, H. Hu, and H. Huang, “The Use of Noble Gases to Constrain Subsurface
Fluid Dynamics in the Hydrocarbon Systems,” Frontiers in Earth Science, vol. 10. 2022. doi:
10.3389/feart.2022.895312.
[19] Q. Sun, H. Tang, H. Ruan, X. Tang, and M. Zhang, “The use of a gravity-assisted-
storage-extraction protocol for hydrogen storage in saline aquifers,” J Clean Prod, vol. 413,
2023, doi: 10.1016/j.jclepro.2023.137408.
[20] J. Che?ko, N. Howaniec, K. Paradowski, and A. Smolinski, “Gas migration in the
aspect of safety in the areas of mines selected for closure,” Resources, vol. 10, no. 7, 2021,
doi: 10.3390/resources10070073.
[21] A. Bourgeat, M. Jurak, and F. Smaï, “On persistent primary variables for numerical
modeling of gas migration in a nuclear waste repository,” ComputGeosci, vol. 17, no. 2, 2013,
doi: 10.1007/s10596-012-9331-1.
[22] V. Zgonnik, V. Beaumont, E. Deville, N. Larin, D. Pillot, and K. M. Farrell, “Evidence
for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid
depressions on the Atlantic Coastal Plain, Province of the USA),” Prog Earth Planet Sci, vol.
2, no. 1, 2015, doi: 10.1186/s40645-015-0062-5.
[23] G. Etiope, “Massive release of natural hydrogen from a geological seep (Chimaera,
Turkey): Gas advection as a proxy of subsurface gas migration and pressurised
accumulations,” Int J Hydrogen Energy, vol. 48, no. 25, 2023, doi: 10.1016/j.ijhydene.2022.12.025.
[24] S. Han, C. Xiang, X. Du, L. Xie, S. Bai, and C. Wang, “Logging evaluation of deep
multi-type unconventional gas reservoirs in the Songliao basin, northeast China: Implications
from continental scientific drilling,” Geoscience Frontiers, vol. 13, no. 6, 2022, doi:
10.1016/j.gsf.2022.101451.
[25] Q. Liang et al., “Geochemistry and sources of hydrate-bound gas in the Shenhu area,
northern south China sea: Insights from drilling and gas hydrate production tests,” J Pet
SciEng, vol. 208, 2022, doi: 10.1016/j.petrol.2021.109459.
[26] J. R. Underhill and N. Richardson, “Geological controls on petroleum plays and future
opportunities in the North Sea Rift Super Basin,” Am Assoc Pet Geol Bull, vol. 106, no. 3,
2022, doi: 10.1306/07132120084.
[27] D. Zhi, X. Wang, and Z. Qin, “Geneses, Sources and Accumulation Process of Natural
Gases in the Hinterland of the Junggar Basin,” Front Earth Sci (Lausanne), vol. 10, 2022, doi:
10.3389/feart.2022.843245.
[28] J. Li et al., “The hydrogen isotopic characteristics of the Upper Paleozoic natural gas
in Ordos Basin,” Org Geochem, vol. 74, 2014, doi: 10.1016/j.orggeochem.2014.01.020.
[29] M. Leila, K. Loiseau, and I. Moretti, “Controls on generation and accumulation of
blended gases (CH4/H2/He) in the Neoproterozoic Amadeus Basin, Australia,” Mar Pet Geol,
vol. 140, 2022, doi: 10.1016/j.marpetgeo.2022.105643.
[30] T. BORJIGIN et al., “Mechanisms of shale gas generation and accumulation in the
Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China,” Petroleum Exploration
and Development, vol. 44, no. 1, 2017, doi: 10.1016/S1876-3804(17)30009-5.
[31] M. Kobraei, J. Sadouni, and A. R. Rabbani, “Organic geochemical characteristics of
Jurassic petroleum system in Abadan Plain and north Dezful zones of the Zagros basin,
southwest Iran,” Journal of Earth System Science, vol. 128, no. 3, 2019, doi: 10.1007/s12040-
019-1082-0.
[32] J. J. Xu et al., “Factors controlling organic-rich shale development in the Liushagang
Formation, Weixinan Sag, Beibu Gulf Basin: Implications of structural activity and the
depositional environment,” Pet Sci, vol. 18, no. 4, 2021, doi: 10.1016/j.petsci.2020.08.001.
[33] M. Igarza, M. Boussafir, M. Graco, A. Sifeddine, J. Vald


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo