JOURNAL OF BIOLOGY AND GENETIC RESEARCH (JBGR )

E-ISSN 2545-5710
P-ISSN 2695-222X
VOL. 10 NO. 2 2024
DOI: 10.56201/jbgr.v10.no2.2024.pg83.97


Zinc-oxide Nanoparticles Biosynthesis from RHODOTORULA GLUTINIS and test its Anticancer cytotoxicity

DOAA ABD AlABAS MUHAMMED RIDH      


Abstract


This study focuses on the extracellular green synthesis of zinc oxide nanoparticles (ZnO NPs) using cell filtrate from yeast Rhodotorula glutinis and investigate the anticancer activity of these nanoparticles and compare it with the cytotoxicity effect of its biomass extraction on a breast cancer cell line. The optical properties of the nanoparticles were analyzed using UV—vis spectroscopy which showed a distinct absorption peak at (375.50) nm, while Fourier transform infrared spectroscopy (FT-IR) was proofed presence of characteristic functional groups belongs to ZnO, C=C, C=O, C-H and OH. The data obtained from the MTT assay indicate that the ZnO NPs exhibit high toxicity and significantly decrease cell viability in the breast cancer cell line compared to the biomass extraction and untreated cell line.


keywords:

MTT assay, Nanoparticles, anticancer, Zinc oxide, fungi


References:


Al-Dhabi, N. A., & Arasu, M. V. (2018). Environmentally-friendly green approach for the
production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal
properties. Nanomaterials, 8(7). https://doi.org/10.3390/nano8070500
Ammar, H. A., Alghazaly, M. S., Assem, Y., & Abou Zeid, A. A. (2021). Bioengineering and
optimization of PEGylated zinc nanoparticles by simple green method using Monascus
purpureus, and their powerful antifungal activity against the most famous plant pathogenic
fungi, causing food spoilage. Environmental Nanotechnology, Monitoring & Management,
16, 100543.
Arakha, M., Roy, J., Nayak, P. S., Mallick, B., & Jha, S. (2017). Zinc oxide nanoparticle energy
band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic
cell death. Free Radical Biology & Medicine, 110, 42–53.
Balakumaran, M. D. (2016). Mycosynthesis of silver and gold nanoparticles: Optimization,
characterization and antimicrobial activity against humanpathogens. Microbiological
Research, 182, 8–20. https://doi.org/10.1016/j.micres.2015.09.009
Budime, P., & Poklar, N. (2018). Multifunctional Superparamagnetic Iron Oxide Nanoparticles?:
Promising Tools in Cancer Theranostics . Multifunctional superparamagnetic iron oxide
nanoparticles?: Promising tools in cancer theranostics. Cancer Letters, 336(1), 8–17.
https://doi.org/10.1016/j.canlet.2013.04.032
Calabi, M., Jara, A., Bendall, J., Welland, M., De, M., & Mora, L. (2010). Structural
characterization of natural nanomaterials?: potential use to increase the phosphorus
mineralization . August, 29–32.
Castro-Garza, J., Barrios-Garc?a, H. B., Cruz-Vega, D., SaidFernandez, S., Carranza-Rosales, P.,
Molina-Torres, C. A., & VeraCabrera, L. (2007). Use of a colorimetric assay to measure
differences in cytotoxicity ofMycobacterium tuberculosis strains. J. M.Microbiology., 56,
733–737.
Chaing, W., Chang, M., & Lin, C. (2003). In vitro cytotoxic antiviral and immunomodulatory
effects of Plantago major and Plantago asiatica. American Journal of Chinese Medicine.,
31(2), 225–234.
Drbohlavova, J., Chomoucka, J., Adam, V., Ryvolova, M., Eckschlager, T., Hubalek, J., &
Kizek, R. (2013). Nanocarriers for Anticancer Drugs - New Trends in Nanomedicine. In
Current Drug Metabolism (Vol. 14, Issue 5, pp. 547–564).
https://doi.org/10.2174/1389200211314050005
Dulta, K., Ko?arsoy A?çeli, G., Chauhan, P., Jasrotia, R., & Chauhan, P. K. (2021). A Novel
Approach of Synthesis Zinc Oxide Nanoparticles by Bergenia ciliata Rhizome Extract:
Antibacterial and Anticancer Potential. Journal of Inorganic and Organometallic Polymers
and Materials, 31(1), 180–190. https://doi.org/10.1007/s10904-020-01684-6
G, B., 1, & , Chandhuru J , Sheraz Fahad K , Praveen AS , Chamundeeswari M, M. T. (2015).
Anticancer activity of fungal L-asparaginase conjugated with zinc oxide nanoparticles.
Journal of Materials Science. Materials in Medicine, 26(1), 5380.
Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Durán, N., & Rai, M. K. (2008).
Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased
Materials and Bioenergy, 2(3), 243–247. https://doi.org/10.1166/jbmb.2008.401
Gao, Y., Arokia Vijaya Anand, M., Ramachandran, V., Karthikkumar, V., Shalini, V.,
Vijayalakshmi, S., & Ernest, D. (2019). Biofabrication of zinc oxide nanoparticles from
Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. Journal of Cluster
Science, 30, 937–946.
Gu, F. X., Karnik, R., Wang, A. Z., Alexis, F., Levy-Nissenbaum, E., & Hong, S. (2002).
Targeted nanoparticles for cancer therapy. Nano Today, 2, 14–21.
Hammad, S. E., El-Rouby, M. N., Abdel-Aziz, M. M., El-Sayyad, G. S., & Elshikh, H. H.
(2023). Endophytic fungi–assisted biomass synthesis of gold, and zinc oxide nanoparticles
for increasing antibacterial, and anticancer activities. Biomass Conversion and Biorefinery,
1–18.
Hasan, A. S., Muhsen, T. A., & Alabassi, H. M. (2023). Diagnostic study of the most important
fungal infections associated with some inflammatory bowel disease in Iraqi patients. Acta
Biomed, 94(July). https://doi.org/10.23750/abm.v94i2.15548
Hedayati, M. T., Taheri, Z., Galinimoghadam, T., Aghili, S. R., Cherati, J. Y., & Mosayebi, E.
(2015). Isolation of Different Species of Candida in Patients With Vulvovaginal.pdf.
Jundishapur Journal of Microbiology, 8(4), et5992. https://doi.org/DOI:
10.5812/jjm.8(4)2015.15992
Hoog, D. G. S., Guarro, J., Gené, J., & Figueras, M. J. (2005). , 2005. Atlas of clinical fungi.
Iravani, S. (2014). Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects.
International Scholarly Research Notices, 2014, 1–18. https://doi.org/10.1155/2014/359316
Kaur, H., Ghosh, S., Kumar, P., Basu, B., & Nagpal, K. (2021). Ellagic acid-loaded , tween 80-
coated , chitosan nanoparticles as a promising therapeutic approach against breast cancer?:
In-vitro and in-vivo study. Life Sciences, 284(September), 119927.
https://doi.org/10.1016/j.lfs.2021.119927
Klis, F. M., Boorsma, A., & Groot, P. W. J. De. (2006). Cell wall construction in Saccharomyces
cerevisiae. National Library of Medicine, 23(3), 185–202.
Kot, A. M., B?a?ejak, S., Kurcz, A., Gientka, I., & Kieliszek, M. (2016). Rhodotorula glutinis—
potential source of lipids, carotenoids, and enzymes for use in industries. Applied
Microbiology and Biotechnology, 100(14), 6103–6117. https://doi.org/10.1007/s00253-016-
7611-8
Low DYS et al. (2021). Ultrasound-enhanced biosynthesis of uniform ZnO nanorice using
Swietenia macrophylla seed extract and its in vitro anticancer activity. Nanotechnol Rev,
10(1), 572–585.
Maeng, J. H., Lee, D. H., & Jung, K.H., et al. (2010). Multifunctional doxorubicin loaded
superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance
imaging in liver cancer. Biomaterials, 31, 4995–5006.
Martínez-Torres AC et al. (2018). Chitosan gold nanoparticles induce cell death in hela and
MCF-7 cells through reactive oxygen species production. In International Journal of
Nanomedicine (Vol. 13, pp. 3235–3250). https://doi.org/10.2147/IJN.S165289
Moghaddam, A. B., Namvar, F., Moniri, M., Tahir, P. M., Azizi, S., & Mohamad, R. (2015).
Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties,
and medical applications. Molecules, 20(9), 16540–16565.
https://doi.org/10.3390/molecules200916540
Muhsin, T. M., & Hachim, A. K. (2014). Mycosynthesis and characterization of silver
nanoparticles and their activity against some human pathogenic bacteria. World Journal of
Microbiology and Biotechnology, 30(7), 2081–2090. https://doi.org/10.1007/s11274-014-
1634-z
Pi, H., Anandharaj, M., Kao, Y., Lin, Y., & Chang, J. (2018). Engineering the oleaginous red
yeast Rhodotorula glutinis for simultaneous ? -carotene and cellulase production. Scientific
Reports, March, 2–11. https://doi.org/10.1038/s41598-018-29194-z
Raj, A., Lawrence, R. S., Jalees, M., & Lawrence, K. (2015). Anti-Bacterial Activity of Zinc
Oxide Nanoparticles Prepared From Brassica Oleraceae Leaves Extract. International
Journal of Advanced Research, 3(11), 322–328. http://www.journalijar.com
Rajan, A., Cherian, E., & Baskar, G. (2016). Biosynthesis of zinc oxide nanoparticles using
Aspergillus fumigatus JCF and its antibacterial activity. 1(2), 52–57.
Salvadori, M. R., Monezi, T. A., Mehnert, D. U., & Corrêa, B. (2019). Antimicrobial Activity of
Ag/Ag2O Nanoparticles Synthesized by Dead Biomass of Yeast and their Biocompatibility
with Mammalian Cell Lines. International Journal of Research Studies in Microbiology and
Biotechnology, 5(1), 7–15. https://doi.org/10.20431/2454-9428.0501002
Samuel, D., Adeboye, O., Jamiu, A., Ogechukwu, J., Ajiboye, D., Morifi, E., & Olaposi, I.
(2021). VEGFR-2 kinase domain inhibition as a s


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo