International Journal of Agriculture and Earth Science (IJAES )
E- ISSN 2489-0081
P- ISSN 2695-1894
VOL. 10 NO. 9 2024
DOI: 10.56201/ijaes.v10.no9.2024.pg1.20
Kamalu Muktar Aliyu, Amir Abdulazeez, Musa Zara and Mohammed Bukar Gomna
Forests are significant terrestrial carbon sinks that play a crucial role in mitigating climate change by sequestering atmospheric carbon dioxide (CO2). Trees as the primary components of forests, have been extensively studied for their carbon sequestration potential. This review comprehensively explored the factors influencing tree carbon sequestration, the methodologies employed to measure and estimate carbon sequestration and the potential of trees in addressing climate change. The carbon sequestration potential of trees is influenced by various factors, including species-specific characteristics, stand age and structure, site conditions and management practices. Tree species possess inherent differences in their growth rates, photosynthetic efficiency and biomass allocation patterns, which directly impact their carbon sequestration capacity. Older, mature forests generally exhibit higher potential due to their larger biomass and slower growth rates. Site factors such as soil fertility, climate and topography also influence tree growth and carbon storage. Proper forest management practices, including silvicultural treatments and harvesting strategies, can optimize carbon sequestration by promoting tree health and growth. A variety of methodologies have been developed to measure and estimate tree carbon sequestration. Direct measurements involve destructive sampling to quantify aboveground and belowground biomass, while indirect methods utilize allometric equations, the mean ratio method (MRM), the biomass expansion factor (BEF) and remote sensing techniques. Trees have immense potential to sequester carbon and mitigate global climate change. Afforestation and reforestation initiatives can create new forest ecosystems, expanding the global carbon sink. Sustainable forest management practices can enhance carbon sequestration in existing forests while ensuring their long-term health and productivity. Tree-based carbon offset
Carbon dioxide (CO2), Carbon Sequestration, Climate Change, Mitigation, Potentials.
Abdulazeez, A., Ibrahim, A. and Shinkafi, A.M. (2018). An Examination of the Socio
Environmental Effects of
Deforestation in Zamfara State Forest Reserves, Nigeria.
FUDMA Journal of Sciences. 2(1), 99-107. ISSN: 2616-1370. Published by Faculty
of Sciences, Federal University Dutsin-Ma.
Abdulazeez, A., Shinkafi, A.M., Ibrahim, A. and Isma’il F.T. (2016). A Spatio-Temporal
Analysis of Forest
Depletion and Vegetation Change in the Marbe Forest Reserve,
Zamfara State, Nigeria. Journal of Geographic Thought & Environmental Studies.
14(3), 110-122. ISSN: 1118-00064. Published by
Department of Geography and
Environmental Management, University of Porthacourt.
Adekunle, V.A.J., Nair, N.K., Srivastava, A.K. and Singh, N.K., (2014). Volume yield, tree
species diversity and carbon hoard in protected areas of two developing countries,
Forest Science and Technology, 10:2, 89-103, DOI:10.1080/21580103.2013.860050
Agbelade A. D. and Adeagbo D. O. (2020). Relationship Between Aboveground Biomass and
Tree Species Diversity in Two Protected Forests. Journal of Forestry Research and
Management. Vol. 17(1).13-25; 2020, ISSN 0189-8418 www.jfrm.org.ng.
Agbelade A.D. and Lawal A. (2021). Volume Yield and Carbon Hoard In Two Community-
Managed Forests Of Ekiti State, Southwest, Nigeria. Forests and Forest Products
Journal 19:127-135.
Anav, A. et al., (2015). Spatiotemporal patterns of terrestrial gross primary production:
A review. Reviews of Geophysics, 53(3), 785–818, doi:10.1002/2015rg000483.
Anav, A., Pierre Friedlingstein, Christian Bee, Philippe Ciais, Anna Harper, Chris Jones,
Guillermo Murray-Tortarolo, Dario Papale, Nicholas C. Parazoo, Philippe Peylin,
Shilong Piao, Stephen Sitch, Nicolas Viovy, Andy Wiltshire, and Maosheng Zhao.
(2015), Spatiotemporalpatterns of terrestrial gross primaryproduction: A review, Rev.
Geophys., 53,785–818, doi:10.1002/2015RG000483.
Andela, N., D. C. Morton, L. Giglio, Y. Chen, G. R. van der Werf, P. S. Kasibhatla, R. S.
DeFries, G. J. Collatz, S. Hantson, S. Kloster, D. Bachelet, M. Forrest, G. Lasslop, F.
Li, S. Mangeon, J. R. Melton, C. Yue, J. T. Randerson. (2017). A human-driven decline
in global burned area. Science, 1356, 1356–1362, doi:10.1126/science.aal4108.
Arora, V.K. and J.R. Melton, (2018). Reduction in global area burned and wildfire emissions
since 1930s enhances carbon uptake by land. Nature Communications, 9(1), 1326,
doi:10.1038/s41467-018-03838.
Bada, G. O., Utomi, A. O., & Owolabi, O. A. (2018). Assessment of carbon sequestration
potential of some tree species in Nigeria. Journal of Agriculture and Environmental
Sciences, 2(1), 1-9.
Badgley, G., C.B. Field and J.A. Berry, (2017). Canopy near-infrared reflectance and terrestrial
photosynthesis. Science Advances, 3(3), e1602244, doi:10.1126/sciadv.1602244.
Ballantyne Ashley, William Smith, William Anderegg, Pekka Kauppi, Jorge Sarmiento, Pieter
Tans, Elena Shevliakova, Yude Pan, Benjamin Poulter, Alessandro Anav, Pierre
Friedlingstein, Richard Houghton & Steven Running. (2017). Accelerating net
terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature
Climate Change, 7(2), 148–152, doi:10.1038/nclimate3204.
Boer, M.M., V. Resco de Dios and R.A. Bradstock, (2020). Unprecedented burn area of
Australian mega forest fires. Nature Climate Change, 10(3), 171– 172,
doi:10.1038/s41558-020-0716-1.
Bowman, D. M. J. S., Crystal A. Kolden, John T. Abatzoglou, Fay H. Johnston, Guido R. van
der Werf & Mike Flannigan. (2020). Vegetation fires in the Anthropocene. Nature
Reviews Earth & Environment, 1(10), 500–515, doi:10.1038/ s43017-020-0085-3.
Campbell, J. E., J. A. Berry, U. Seibt, S. J. Smith, S. A. Montzka, T. Launois, S. Belviso, L.
Bopp & M. Laine. (2017). Large historical growth in global terrestrial gross primary
production. Nature, 544(7648), 84–87, doi:10.1038/nature22030.
Chabot, J. F., & Goldstein, R. A. (2018). Trees: A guide to their structure, function and ecology.
Academic Press.
Chen, Z.; Yu, G. (2020). Wang, Q. Effects of Climate and Forest Age on the Ecosystem Carbon
Exchange of Afforestation. J. For. Res. 2020, 31, 365–374.
Chen, Z.; Yu, G.; Ge, J.; Sun, X.; Hirano, T.; Saigusa, N.; Wang, Q.; Zhu, X.; Zhang, Y.; Zhang,
J.; et al. (2013). Temperature and Precipitation Control of the Spatial Variation of
Terrestrial Ecosystem Carbon Exchange in the Asian Region. Agric. For. Meteorol.
2013, 182–183, 266–276.
Cheng Lei, Lu Zhang, Ying-Ping Wang, Josep G. Canadell, Francis H. S. Chiew, Jason
Beringer, Longhui Li, Diego G. Miralles, Shilong Piao & Yongqiang Zhang. (2017).
Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature
Communications, 8(1), 110, doi:10.1038/ s41467-017-00114-5.
Ciais, P., J. Tan, X. Wang, C. Roedenbeck, F. Chevallier, S.-L. Piao, R. Moriarty, G. Broquet,
C. Le Quéré, J. G. Canadell, S. Peng, B. Poulter, Z. Liu & P. Tans. (2019). Five decades
of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature,
568(7751), 221–225, doi:10.1038/s41586-019-1078-6.
Cronquist, A. (1981). An integrated system of classification of flowering plants. Columbia
University Press.
Dai, L.; Zhang, Y.; Wang, L.; Zheng, S.; Xu, W. (2021). Assessment of Carbon Density in
Natural Mountain Forest Ecosystems at Northwest China. Int. J. Environ. Res. Public.
Health 2021, 18, 2098.
Dossa, Kossivi Fabrice and Yann Emmanuel Miassi. (2024). “Remote Sensing Methods and
GIS Approaches for Carbon Sequestration Measurement: A General Review”.
International Journal of Environment and Climate Change 14 (7):222- 33.
https://doi.org/10.9734/ijecc/2024/v14i74265
FAO. (2020). The state of the world's forests 2020. Food and Agriculture Organization of the
United Nations.
Fernández-Martínez, M., J. Sardans, F. Chevallier, P. Ciais, M. Obersteiner, S. Vicca, J. G.
Canadell, A. Bastos, P. Friedlingstein, S. Sitch, S. L. Piao, I. A. Janssens & J. (2019).
Global trends in carbon sinks and their relationships with CO2 and temperature. Nature
Climate Change, 9(1), 73–79, doi:10.1038/s41558-018-0367-7.
Forkel Matthias, Wouter Dorigo, Gitta Lasslop, Emilio Chuvieco, Stijn Hantson, Angelika
Heil, Irene Teubner, Kirsten Thonicke and Sandy P Harrison(2019). Recent global and
regional trends in burned area and their compensating environmental controls.
Environmental Research Communications, 1(5), 051005,
doi:10.1088/2515-7620/ab25d2.
Friedlingstein Pierre, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith
Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne
Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E.
O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice
Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric
Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas
Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas
Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana
Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan
Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian
Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R.
Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien,
Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy
Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan,
Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte
Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof,
Andrew J. Watson, David Willis, Andrew J