International Journal of Engineering and Modern Technology (IJEMT )

E-ISSN 2504-8848
P-ISSN 2695-2149
VOL. 10 NO. 7 2024
DOI: 10.56201/ijcsmt.v10.no4.2024.pg150.159


Using Deep Learning in the Ecology Field

Anouar DALLI


Abstract


To have an impact on the environment, deep learning currently occupies an important place in the progress of nature, science and the environment. Although it may not seem obvious at first glance to the public, deep learning technologies can make a positive contribution to ecology. In this article we present the use of deep learning to resolve ecological issues and the difficulties we encounter



References:


[1].
Abrams, J. F., A. Vashishtha et al., 2019. Habitat-Net: Segmentation of habitat images
using deep learning. Ecological informatics 51, 121-128.
[2].
Anses, 2020. La saison de cueillette des champignons commence : restez vigilants face
aux risques d’intoxications !
[3].
Ärje, J., C. Melvad et al., 2020. Automatic image-based identification and biomass
estimation of invertebrates. Methods in Ecology and Evolution.
[4].
Baraniuk, R., D. Donoho & M. Gavish, 2020. The science of deep learning.
Proceedings of the National Academy of Sciences 117, 30029-30032.
[5].
Beery, S., D. Morris & S. Yang, 2019. Efficient pipeline for camera trap image review.
arXiv preprint arXiv:1907.06772.
[6].
Beery, S., G. Van Horn & P. Perona. Recognition in terra incognita. Proceedings of the
European Conference on Computer Vision (ECCV), 456-473.
[7].
Bellman, R., 1966. Dynamic programming. Science 153, 34-37.
[8].
Bogucki, R., M. Cygan et al., 2019. Applying deep learning to right whale photo
identification. Conservation Biology 33, 676-684.
[9].
Bolger, D. T., T. A. Morrison et al., 2012. A computer-assisted system for photographic
mark--recapture analysis. Methods in Ecology and Evolution 3, 813-822.
[10].
Brodrick, P. G., A. B. Davies & G. P. Asner, 2019. Uncovering ecological
patterns with convolutional neural networks. Trends in ecology and evolution 34, 734-
International Journal of Engineering and Modern Technology (IJEMT) E-ISSN 2504-8848
P-ISSN 2695-2149 Vol 10. No. 7 2024 www.iiardjournals.org Online Version
[11].
Charpentier, M. J. E., M. Harté et al., 2020. Same father, same face: Deep
learning reveals selection for signaling kinship in a wild primate. Science Advances 6,
eaba3274-eaba3274.
[12].
Christin, S., É. Hervet & N. Lecomte, 2019. Applications for deep learning in
ecology. Methods in Ecology and Evolution 10, 1632-1644.
[13].
Duporge, I., O. Isupova et al., 2020. Using very-high-resolution satellite
imagery and deep learning to detect and count African elephants in heterogeneous
landscapes. Remote Sensing in Ecology and Conservation.
[14].
Dutta, A. & A. Zisserman, 2019. The VIA annotation software for images, audio
and video Proceedings of the 27th ACM International Conference on Multimedia:2276-
[15].
Ferreira, A. C., L. R. Silva et al., 2020. Deep learning-based methods for
individual recognition in small birds. Methods in Ecology and Evolution.
[16].
Graving, J. M., D. Chae et al., 2019. DeepPoseKit, a software toolkit for fast
and robust animal pose
[17].
estimation
using
deep
learning.
eLife
8,
e47994-e47994.
Guirado, E., S. Tabik et al., 2019. Whale counting in satellite and aerial images with
deep
learning.

Scientific
Reports
9,
1-12.
Huang, H., H. Zhou, X. Yang, L. Zhang, L. Qi & A.-Y. Zang, 2019. Faster R-CNN for
marine organisms detection and recognition using data augmentation. Neurocomputing
337, 372-384.
[18].
Jin, H., Q. Song & X. Hu. Auto-keras: An efficient neural architecture search
system. Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining,1946-1956


DOWNLOAD PDF

Back


Google Scholar logo
Crossref logo
ResearchGate logo
Open Access logo
Google logo