INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND MATHEMATICAL THEORY (IJCSMT )
E-ISSN 2545-5699
P-ISSN 2695-1924
VOL. 10 NO. 3 2024
DOI: 10.56201/ijcsmt.v10.no3.2024.pg19.31
Cookey, I.B, Bennett, E.O, Anireh, V.I.E, & Matthias, D
Salt and pepper noise is a prevalent type of impulsive noise that often contaminates digital photographs, resulting in a decline in their quality and hindering subsequent image processing operations. This paper provides a comprehensive examination of a hybrid model (Fuzzy Logic and Genetic Algorithm) denoising methods that are specifically developed to handle salt and pepper noise in grayscale images. It tends to offer insights into their fundamental concepts, advantages, and constraints.
Salt and Pepper noise, Fuzzy logic, Genetic Algorithm, Grey images.
[1]. Alaoui, N., Adamou?Mitiche, A. B. H., & Mitiche, L. (2020). Effective hybrid genetic
algorithm for removing salt and pepper noise. IET Image Processing, 14(2), 289-296.
[2]. Albadr, M. A., Tiun, S., Ayob, M., & Al-Dhief, F. (2020). Genetic algorithm based on natural
selection theory for optimization problems. Symmetry, 12(11), 1758.
[3]. B?lohlávek, R., & Klir, G. J. (Eds.). (2011). Concepts and fuzzy logic. MIT press.
[4]. Chen, M. (2018, September). Applications research of improved genetic algorithm in image
denoising. In Journal of Physics: Conference Series (Vol. 1087, No. 2, p. 022032). IOP Publishing.
[5]. Chowdhury, M., Gao, J., & Islam, R. (2016, July). Fuzzy logic-based filtering for image de-
noising. In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 2372-
2376). IEEE.
[6]. Davies, I. N., Ene, D., Cookey, I. B., & Lenu, G. F. (2022). Implementation of a Type-2 Fuzzy
Logic Based Prediction System for the Nigerian Stock Exchange. arXiv preprint
arXiv:2202.02107.
[7]. de Paiva, J. L., Toledo, C. F., & Pedrini, H. (2016). An approach based on hybrid genetic
algorithm applied to image denoising problem. Applied Soft Computing, 46, 778-791.
[8]. Faro, A., Giordano, D., & Spampinato, C. (2006). Neural network combined with fuzzy logic
to remove salt and pepper noise in digital images. In Applications of Soft Computing: Recent
Trends (pp. 23-33). Springer Berlin Heidelberg.
[9]. Ghazwan Jabbar, A. (2023). SALT AND PEPPER NOISE REMOVING IN GRAY IMAGES
BASED ON FUZZY LOGIC. Central Asian Journal of Mathematical Theory and Computer
Sciences, 4(8), 81-90.
[10]. Mirjalili, S., & Mirjalili, S. (2019). Genetic algorithm. Evolutionary algorithms and neural
networks: Theory and applications, 43-55.
[11]. Ralevi?, N. (2021). Applications of the Fuzzy metrics in image denoising and segmentation.
Tehni?ki vjesnik, 28(3), 819-826.
[12]. Salamat, N., & Missen, M. M. S. (2015). Fuzzy rule-based salt and pepper noise removing
in gray images. British Journal of Mathematics & Computer Science, 6(1), 53.
[13]. Sakthidasan, K., & Nagappan, N. V. (2016). Noise free image restoration using hybrid filter
with adaptive genetic algorithm. Computers & Electrical Engineering, 54, 382-392.
[14]. Toledo, C. F., de Oliveira, L., da Silva, R. D., & Pedrini, H. (2013, June). Image denoising
based on genetic algorithm. In 2013 IEEE Congress on Evolutionary Computation (pp. 1294-
1301). IEEE.
[15]. Yager, R. R., & Zadeh, L. A. (Eds.). (2012). An introduction to fuzzy logic applications in
intelligent systems (Vol. 165). Springer Science & Business Media.
[16]. Zadeh, L. A. (2023). Fuzzy logic. In Granular, Fuzzy, and Soft Computing (pp. 19-49). New
York, NY: Springer US